
The University of British Columbia
Computer Science/Data Science 405/505 Modelling and Simulation

Assignment 4 Solutions

1. 100 insects are placed in a container holding a certain amount of insecticide. After 1
hour, 44 insects have died. Assuming that the insects survive independently of each
other, use a binomial distribution model, together with maximum likelihood, to estimate
the probability that more than 50 insects would survive in another experiment held
under identical conditions.

With p defined as the probability of an insect surviving, the likelihood function is

L(p) = px(1− p)n−x

where x is the number of insects that survive, in an experiment with n insects. Differ-
entiating log(L(p)) with respect to p, gives

x

p
− n− x

1− p

Setting this to 0 and solving for p, we have p̂ = x/n. In the experiment that was
conducted, 56 insects survived, out of 100, so =̂.56. We can use this maximum likeli-
hood estimate to estimate the probability that more than 50 insects survive in another
experiment as follows:

1 - pbinom(50, 100, .56) # i.e. 1 - P(X <= 50)

[1] 0.8659234

2. Data from the German stock exchange is in the DAX column of EuStockMarkets.

(a) Store the successive differences of the log of the data in an object called DAXlogreturn.

DAX <- EuStockMarkets[, 1]

DAXlogreturn <- diff(log(DAX))

(b) Calculate the mean of the log returns. This represents a deterministic drift in the
series which translates into a deterministic trend - either upwards or downwards.

drift <- mean(DAXlogreturn)

drift

[1] 0.0006520417

(c) Apply the acf() function to these data. Is there evidence of linear dependence (i.e.
autocorrelation)? If so, at which lags?

acf(DAXlogreturn)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.
0

0.
4

0.
8

Lag

A
C

F

Series DAXlogreturn

There is no evidence of linear dependence in the data.

(d) Apply the acf() function to the squared data points. Is there evidence of autocor-
relation now? If so, at which lags?

acf(DAXlogreturn^2)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.
0

0.
4

0.
8

Lag

A
C

F

Series DAXlogreturn^2

There is evidence of dependence now, particularly at the 2nd lag.

(e) We can obtain approximate values to a0, a1 and a2 for an ARCH(2) model by
fitting an AR(2) model to the squared data points. Apply this technique to the
DAXlogreturn data. Write out the fitted AR(2) model.

DAX.ar2 <- arima(DAXlogreturn^2, order = c(2, 0, 0))

DAX.ar2

##

Call:

arima(x = DAXlogreturn^2, order = c(2, 0, 0))

##

Coefficients:

ar1 ar2 intercept

0.0658 0.1661 1e-04

s.e. 0.0229 0.0229 0e+00

##

sigma^2 estimated as 8.863e-08: log likelihood = 12456.1, aic = -24904.2

Let Xi be the ith squared log return. Then

(Xi − .0001) = .0658(Xi−1 − .0001) + .1661(Xi−2 − .0001) + ε

where ε has variance 8.86.

(f) Using the φ estimates from the fitted AR(2) model, write out an approximate
ARCH model for the DAXlogreturn data.

Let Yi be the ith log return. Then

Yi =
√
.0001 + .0658Y 2

i−1 + .1661Y 2
i−2Zi

where Zi is a standard normal random variable.

(g) Using the fitted model, simulate a time series of the same length as the DAX series
which has essentially the same properties, and plot the result, together with the
original data. Make sure to include the drift term in your model.

out <- arima(DAXlogreturn^2, order=c(2, 0, 0)) # (e)

phi <- out$coef[1:2]; xbar <- out$coef[3]; s2 <- out$sigma2

n <- length(DAX)

Simulate from this model # (f)

y <- numeric(n)

y[1:2] <- diff(log(DAX))[1:2] # starting values for process

Z <- rnorm(n) # standard normals used in ARCH

for (i in 3:n) {
s <- sqrt(xbar + phi[1]*y[i-1]^2 + phi[2]*y[i-2]^2)*Z[i]

y[i] <- s

}
y contains log returns, but an initial value is needed to

re-accumulate the prices, and the drift term must be added in:

y <- c(log(DAX[1]), y + drift)

DAXsim <- exp(cumsum(y)) # simulated prices

par(mfrow=c(1, 2)) # (g) compare trace plots of real and simulated data.

ts.plot(DAX)

ts.plot(DAXsim)

Time

D
A

X

1992 1994 1996 1998

20
00

40
00

60
00

Time

D
A

X
si

m

0 500 1000 1500

20
00

40
00

60
00

3. Fit an ARCH(2) model to the French CAC stock market data (the 3rd column of
EuStockMarkets). Simulate a new series of the same length with the same properties
as the CAC data, and plot the simulated data, as well as the original data.

set.seed(963621) # use this to reproduce the output below

CAC <- EuStockMarkets[, 3]

CAClogreturn <- diff(log(CAC))

out <- arima(CAClogreturn^2, order=c(2, 0, 0))

out # fitted ARCH(2) model

##

Call:

arima(x = CAClogreturn^2, order = c(2, 0, 0))

##

Coefficients:

ar1 ar2 intercept

0.107 0.1107 1e-04

s.e. 0.023 0.0230 0e+00

##

sigma^2 estimated as 6.282e-08: log likelihood = 12776.05, aic = -25544.11

phi <- out$coef[1:2]; xbar <- out$coef[3]; s2 <- out$sigma2

n <- length(CAC)

Simulate from this model

y <- numeric(n)

y[1:2] <- diff(log(CAC))[1:2] # starting values for process

Z <- rnorm(n) # standard normals used in ARCH

for (i in 3:n) {
s <- sqrt(xbar + phi[1]*y[i-1]^2 + phi[2]*y[i-2]^2)*Z[i]

y[i] <- s

}
y contains log returns, but an initial value is needed to

re-accumulate the prices, and the drift term must be added in:

y <- c(log(CAC[1]), y + drift)

CACsim <- exp(cumsum(y)) # simulated prices

par(mfrow=c(1, 2)) # compare trace plots of real and simulated data.

ts.plot(CAC)

ts.plot(CACsim)

Time

C
A

C

1992 1994 1996 1998

15
00

25
00

35
00

Time

C
A

C
si

m

0 500 1000 1500

20
00

30
00

4. Containers are temporarily stored at a stockyard with capacity to store 3 containers.
At the beginning of each day, precisely one container arrives at the stockyard, unless
the stockyard is full; in that case, the container is taken elsewhere. Each container stays
a certain amount of time before it is removed. The residency times of the containers
are independent of each other. A container will be removed during a given day with
probability p = .8 (independently of how many days the container has been stored).

Let Xn denote the number of containers in the stockyard at the end of day n. {Xn} is
a Markov chain with state space {0, 1, 2, 3}.

(a) Find the transition matrix.

This is somewhat like the problem discussed in class, but now the length of time
each container stays is a random quantity. Start by noting that if there are no
containers at the end of a day, then the one container that arrives the next must
leave with probability 0.8. When there is one container at the end of the day, and
another arrives at the start of the next day, there must be a probability of .82 that
both containers are taken away, and a probability of .22 that both containers remain.

P =


0.8 0.2 0 0
0.64 0.32 0.04 0
0.512 0.384 0.096 0.008
0.512 0.384 0.096 0.008



When Xn = 3, no containers can be added so the transition to Xn+1isbasedontheprobabilitythatall3containersareremoved(.83),
none of the containers being removed (0.23) and 1 or 2 containers being removed
(3(.8)(.22) and 3(.8)2(.2)).

(b) Find the probability that there are 3 containers in the stockyard at the end of day
3, given that there were 2 containers there at the end of day 1.

To obtain this probability, we need to evaluate the 3-4 entry of the two step transition
matrix:

P (X3 = 3|X1 = 2) = P
(2)
34 = .096(.008) + .008(.008) = 0.000832.

(c) Is the state space irreducible? Explain. The state space is irreducible since all
states communicate (i.e. the Markov chain can transit from 0 to 1 to 2 to 3 and
back to 0 with nonzero probability.

(d) If there is a limiting distribution, find it.

There is a limiting stationary distribution, because the Markov chain is aperiodic
and irreducible.

Solving π = with π0 + π1 + π2 + π3 = 1, any way that you wish, gives

π> = [0.7603 0.2294 0.0102 0.0001].

5. Consider the time-reversible Markov chain discussed in class:

Pi,j =
1

6
min

(
πj
πi
, 1
)
, for j = i− 2, i− 1, i+ 1, i+ 2

and 0 for |j − i| > 2. Pi,i is set to ensure that the row sums of P are 1.

Use this in an MCMC simulation of the probability distribution πj = P (X = j) =
k(.7)j−1 for j = 1, 2, . . ., where k is a value that could be calculated but is not needed.
Simulate 20000 values and use these to estimate the probability π3.

We modify the function that computes the unnormalized values of the steady-state (tar-
get) distribution as follows:

pi.fun <- function(i) {
out <- 0

if (i > 0) out <- .7^(i-1)

out

}

No modification of the Metropolis-Hastings code from class is needed:

Ntransitions <- 20000

X <- numeric(Ntransitions)

current.state <- 50 # initialize the Markov chain

for (n in 1:Ntransitions) {
i <- current.state

P <- c(min(pi.fun(i-2)/pi.fun(i), 1),

min(pi.fun(i-1)/pi.fun(i), 1),

min(pi.fun(i+1)/pi.fun(i), 1),

min(pi.fun(i+2)/pi.fun(i), 1))/6

P0 <- 1 - sum(P)

P <- c(P[1:2], P0, P[3:4])

transition <- sample(seq(-2,2,1), size = 1, prob = P)

current.state <- current.state + transition

X[n] <- current.state

}
observedDist <- table(X[-c(1:1000)])

The estimated probability, π3 is 2882/19000 = 0.152. (Incidentally, the true value is
.3(.7)2 = .147.)

