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Part I: Some Theory - Mostly About the Uniform Distribution

Probability Density Function (pdf)

Calculation of Probabilities: Cumulative distribution function (cdf)

Expected Value (E)

Variance (Var)
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Probability Density Function (pdf)

A continuous function f(x) is a probability density function if it is
always nonnegative, and the area under its graph is exactly 1.0. That is,

f(x) ≥ 0, for all x

and ∫ ∞
−∞

f(x)dx = 1.

All probability density functions have these two properties.

The pdf completely characterizes the probability model.

The pdf is highest at values of x that are most probable.
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Uniform Random Variables

The function

fU(x) =

{
1
b−a, for x ∈ [a, b]
0, otherwise

is an example of a pdf since

fU(x) ≥ 0

and ∫ ∞
−∞

fU(x)dx =
∫ b

a
fU(x)dx = 1.

fU(x) is the uniform density function.

The uniform distribution is a possible model for measurement error but
its most important function is as a building block for almost all other
distributions.
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Picturing Some Examples of the Uniform pdf
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The area under the blue curve is 1 in all cases. This represents the probability that the
random variable takes a value in the interval [a, b].
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Calculation of Probabilities

The probability that a random variable X with density function f(x)

takes a value in an interval [a1, b1] is calculated as

P (a1 ≤ X ≤ b1) =
∫ b1

a1

f(x)dx.

Such probabilities are also expressed in terms of the cumulative
distribution function (cdf):

F (y) = P (X ≤ y) =
∫ y

−∞
f(x)dx.

P (a1 ≤ X ≤ b1) = F (b1)− F (a1).

Note also that the probability density function can be recovered from the
cumulative distribution function by differentiation:

f(x) = F ′(x).
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Evaluation of Probabilities in R

The punif() function can be used to calculate the probability that a
uniform random variable is less than a given value, i.e. the cumulative
distribution function at the given value.

To calculate F (x) = P (X ≤ x) the use punif(x, a, b). This explicitly
evaluates the uniform cumulative distribution function F (x) =x−a

b−a ,
when x lies in [a, b].

For example,

punif(.6, 0, 1)

## [1] 0.6

punif(2.5, 2, 3)

## [1] 0.5
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Picturing Some Examples of the Uniform cdf
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From these graphs, you can read of the probability that a uniform random variable is
less than the given value on the horizontal axis. e.g. in the upper left panel,
F (2.5) = 0.5 so the P (U ≤ 2.5) = 0.5.
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Estimation of Probablities by Simulation

U <- runif(1000000, 2, 3)

hist(U, freq = FALSE)

abline(v = 2.5, col="blue")

Histogram of U
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The proportion of the area to the left of the blue line estimates the probability that U is
less than 2.5.
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Estimation of Probablities by Simulation

Observe:

First 10 simulated uniforms:

U[1:10]

## [1] 2.380 2.775 2.162 2.954 2.019 2.655 2.650 2.100 2.381 2.009

Which ones are less than 2.5?

U[1:10] < 2.5

## [1] TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE

How many are less than 2.5?

sum(U[1:10] < 2.5) # FALSE is equivalent to 0 in R; TRUE <--> 1.

## [1] 6

What proportion are less than 2.5?

sum(U[1:10] < 2.5)/10 # divide by sample size

## [1] 0.6
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Estimation of Probablities by Simulation

Fact: The sample mean is equal to the sum of the sample values (0’s and
1’s here) divided by the sample size.

Equivalent Calculation:

mean(U[1:10] < 2.5) # proportion less than 2.5

## [1] 0.6

More accurate calculation would use the larger sample size:

mean(U < 2.5)

## [1] 0.5004
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Additional Examples: Assume U is Uniform on [2,3].

Estimate P (U ≤ 2.1) and compare with true value.

mean(U <= 2.1)

## [1] 0.1001

punif(2.1, 2, 3)

## [1] 0.1
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Additional Examples: Assume U is Uniform on [2,3].

Estimate P (U ≤ 2.9) and compare with the true value.

mean(U <= 2.9)

## [1] 0.8993

punif(2.9, 2, 3)

## [1] 0.9
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Additional Examples: Assume U is Uniform on [2,3].

Estimate P (U > 2.9) and compare with the true value.

mean(U > 2.9)

## [1] 0.1007

1 - punif(2.9, 2, 3)

## [1] 0.1
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Additional Examples: Assume U is Uniform on [2,3].

Estimate P (2.1 ≤ U < 2.9) and compare with the true value.

mean(U < 2.9 & U >= 2.1 )

## [1] 0.7992

punif(2.9, 2, 3) - punif(2.1, 2, 3)

## [1] 0.8
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Expected Value

The expected value of a single (continuous) random variable X can be
written as

E[X] =
∫ ∞
−∞

xf(x)dx

where f(x) is the probability density function of X.

We say E[X] is the mean of X.

The expected value gives us a single number that, at least in a rough
sense, conveys a typical value for the random variable.

It is sometimes called a measure of location, since it specifies the
location of the distribution along the real axis.
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Expected Value

For the density function fU(x), we have

E[X] =
∫ b

a
x/(b− a)dx =

b+ a

2
. (1)

In other words, the expected value of a uniform random variable is at the
midpoint of the interval.

A commonly used alternate notation for the mean of a distribution is µ,
the Greek letter which roughly translates to the letter “m”.
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Expected Value

Other types of expected value can be calculated by the appropriate
integration. For continuous functions g(x), we have

E[g(X)] =
∫ ∞
−∞

g(x)f(x)dx.

When a is a nonrandom constant, and g(x) = ax, we have

E[aX] =
∫ ∞
−∞

axf(x)dx = a
∫ ∞
−∞

xf(x)dx = aE[X].
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Expected Value

It can also be shown that

E[X + a] = E[X] + a.

(Add something to a random variable, and the expected value of the
variable will change by that amount.)

For example, if T is the boiling point of a liquid which is subject to
random fluctuations in air pressure and with mean E[T ] = 100◦C, the
expected boiling point of the temperature measurements if measured in
Kelvin units is E[T + 273] = E[T ] + 273 = 373K.
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Expected Value

When g(x) = x2, and the probability density function is as above, we
have

E[X2] =
∫ b

a

x2

(b− a)
dx =

b3 − a3

3(b− a)
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Variance

A feature of a distribution which is every bit as important as its location
is its scale, or a measure of the degree of variability of the distribution.

The variance (or its square root, the standard deviation) is one way to
measure the variability of a random variable.

Denoting the mean of X by µ, we have

V (X) = E[(X − µ)2] =
∫ ∞
−∞

(x− µ)2f(x)dx.

An algebraically equivalent expression is

V (X) = E[X2]− µ2.
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Variance

For the uniform distribution fU(x), the variance is

V (X) =
(b− a)2

12
.

A small value of V (X) implies that there is more certainty about the
value of X; it will tend to take values close to µ when V (X) is very small.

The distribution will be more spread out when V (X) is large. (i.e. when
a and b are farther apart)
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Variance

The standard deviation is the square root of the variance. Both
quantities summarize the spread or variability in a probability
distribution. Note also that

Var(aX) = a2Var(X) (2)

for any nonrandom constant a, and

Var(X + a) = Var(X). (3)

In other words, the standard deviation of X is multiplied by a when X is.
And the spread of the distribution doesn’t change if it is only shifted by
an amount a.
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Example

X and X + 3
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No change in range of probable values in the distribution after adding 3.
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Example

X and 2X
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The distribution becomes much more spread out after multiplying by 2.
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Calculating the Mean and Variance from a Sample

When confronted with a sample of measurements x1, x2, . . . , xn, we can
calculate the sample mean by taking the average of the sample values:

x̄ =
1

n

n∑
j=1

xj.

The sample variance is calculated as

s2 =
1

n− 1

n∑
j=1

(xj − x̄)2.

The sample standard deviation is the square root of this: s.
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Calculating the Mean and Variance from a Sample

unifSample <- runif(50, 3, 7)

For the sample contained in unifSample, the sample mean, sample
variance, and sample standard deviation are, respectively,

mean(unifSample)

## [1] 5.241

var(unifSample)

## [1] 1.655

sd(unifSample)

## [1] 1.286
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Part II: Modelling and Simulating Continuous Data

Non-uniform Random Variables - Simulation via Inverse cdf

Weibull and Lognormal Random Variables

Distributions based on the Normal I: χ2

The Connection between S2 and the χ2 Distribution
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Modelling Continuous Data

Examples:

1. Errors can occur in the production of two-dimensional medical
images.

A probability model for the proportions of such errors can be of use
for quality assurance.

For example, it is useful to know whether a machine is producing an
unusually high proportion of errors.

2. Probability models are also of use in reliability: what is the
probability that an individual or a machine will survive for a given
amount of time? Did this component burn out unusually early?
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Modelling Continuous Data

An approximate model for the proportion of pixels in an image that have
been incorrectly classified is

f(x) = (α+ 1)xα, 0 ≤ x ≤ 1

where α is an unknown parameter.

The function f(x) is another example of a probability density function
(pdf), since it is nonnegative and it integrates to 1.

The density is highest at values of x that are most probable.

In this case, we might expect to observe error proportions which are
close to 0, and we would not expect to see many near 1.
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Visualizing the pdf

The density curve can be plotted using the curve() function, which
takes a function of x as its first argument.

alpha <- -0.75 # alpha is set to -0.75

curve((alpha+1)*xˆalpha, ylab="f(x)",

main="Pixel Error pdf")
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Calculation of Probabilities Using the pdf

Recall: the probability that a random variable X with density function
f(x) takes a value in an interval [a, b] is calculated as

P (a ≤ X ≤ b) =
∫ b

a
f(x)dx.

The cumulative distribution function (cdf) is

F (y) = P (X ≤ y) =
∫ y

−∞
f(x)dx =

∫ y

0
(α+ 1)xαdx = yα+1, y ∈ [0,1].
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Probabilities of Large Error Proportions

For example, we may interested in knowing whether an observed error
proportion v is unusually large.

We can check this by calculating the probability that the error proportion
X exceeds y.

P (X > y) = 1− F (y) = 1− yα+1.

Note that we are assuming y ∈ (0,1) here. If y ≥ 1, the probability would
be 0.

If we know that the value of α is −0.5, then The cumulative distribution
function is

F (y) = y0.5 so P (X > y) = 1− y0.5.
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Simulating from the Model

We can use the same procedure as we used to simulate exponential
random variables: invert the cdf at a sequence of random variables U .

First, let’s verify that this makes sense. The mathematics was worked
out earlier, to show that if U is a uniform random variable, then when
F−1(U) is a random variable with cdf F (x).

We can also use simulation to show this:

U <- runif(100000) # simulate lots of uniforms

X <- Uˆ2 # apply inverse cdf (assume alpha = -.5)
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Simulating from the Model

Plot the histogram and overlaid density curve

hist(X, freq = FALSE)

alpha <- -0.5

curve((alpha + 1)*xˆ(alpha), 0, 1, add = TRUE, col = "red")
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The density curve matches the relative frequency histogram closely. Exercise: try this
for other values of alpha.
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General Simulation Method: Inverse CDF

If you have a way of calculating the inverse function of the cdf, the
following method can be used to convert uniform numbers to the flavour
you are targetting:

U <- runif(N) # simulate N uniforms

X <- Finv(U) # tranform to the target distribution

# using the inverse of the cdf

X
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Another Example

Suppose X is a random variable with cdf F (x) = sin(x) for x ∈ [0, π/2].

1. Is F (x) a true cdf?

2. Simulate 10000 random variates from this distribution.

U <- runif(10000)

X <- asin(U)

Note that the pdf is f(x) = cos(x) for x ∈ [0, π2/], and 0, otherwise.
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Simulating from the Model

Plot the histogram and overlaid density curve

hist(X, freq = FALSE)

curve(cos(x), 0, pi/2, add = TRUE, col = "red")
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The density curve matches the relative frequency histogram closely.
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Models for Survival

Recall the exponential distribution, a simple model for a lifetime
distribution:

f(x) = λe−λx, x > 0

and f(x) = 0, otherwise.

curve(dexp(x), 0, 5, ylab="f(x)")

0 1 2 3 4 5

0.
0

0.
4

0.
8

x

f(
x)

The density is
highest near 0. When we simulate from this distribution we get a lot of unrealistically
low values:

X <- rexp(9); X

## [1] 2.584 1.308 1.329 1.232 0.597 1.266 0.459 1.228 8.319
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The Weibull Distribution

If we take the square root of X, the behaviour is different:
sqrt(X)

## [1] 1.607 1.144 1.153 1.110 0.773 1.125 0.677 1.108 2.884

X <- rexp(10000)
Y <- sqrt(X)
par(mfrow=c(1, 2))
hist(X); hist(Y)
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The Weibull Distribution

In general, a Weibull random variable is defined as a power of an
exponential random variable.

That is, if X is exponential, λ, then Y = X1/β is Weibull with parameters
β and λ. β controls the shape of the distribution and λ controls the scale.

The cdf of Y is

F (y) = P (Y ≤ y) = P (X ≤ y1/β) = 1− e−λy
1/β

where we used the exponential cdf of X in the middle of the above
derivation.

Differentiating F (y) gives you the pdf of the Weibull.

Note:

dweibull(x, shape = 2, scale = 1) # Weibull pdf with beta = 2, lambda = 1
pweibull(x, shape = 2, scale = 1) # cdf
rweibull(n, shape = 2, scale = 1) # rng
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The Weibull Distribution

Simulating and comparing with the density curve:
Y <- rweibull(10000, shape = 2, scale = 1)
hist(Y, freq = FALSE)
curve(dweibull(x, shape = 2, scale = 1), 0, 3, col = "red", add = TRUE)
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The Lognormal Distribution

If we take the exponential of X, where X is a normal random variable, we
obtain a lognormal random variable, another model for survival times:

X <- rnorm(10000, mean = 1.5, sd = 0.5)

Y <- exp(X)

par(mfrow=c(1, 2))

hist(X); hist(Y)
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Example: Liver Transplant Waiting Times

Data in the transplant data slide in the survival package relate to
waiting times for liver transplant patients.

We consider the males who have type B blood here:

library(survival)

waitsMB <- subset(transplant, sex=="m" & abo=="B" )$futime

These data are well approximated by the lognormal distribution.
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Example: Liver Transplant Waiting Times

Raw data on left. Log of raw data on right.

par(mfrow=c(1, 2))

hist(waitsMB); hist(log(waitsMB))
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The log plot looks very normal.
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QQ-Plot: A Better Way of Checking Normality

Look for a straight line. If you see it, you have normality. If not, you
don’t.

par(mfrow=c(1, 2))

qqnorm(waitsMB); qqline(waitsMB)

qqnorm(log(waitsMB)); qqline(log(waitsMB))
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The plot on the right looks much straighter than the one on the left.
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Random Variables Constructed from Normals

Construction starts with the standard normal random variable

• Let Y be a normal random variable with mean µ and standard
deviation σ

•

Z =
Y − µ
σ

(4)

is a standard normal random variable.
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Transforming Normal to Standard Normal

Check standardization by simulation:

X <- rnorm(1000, mean =3, sd = 2); Z <- (X-3)/2

par(mfrow=c(1, 2))

hist(X, freq=FALSE); hist(Z, freq=FALSE)

curve(dnorm(x), -3, 3, col=2, add=TRUE)
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The distribution of Z is identical to that of X, therefore normal. N(0,1) pdf curve
matches.
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The χ2 Random Variables

• Squaring Z leads to a χ2χ2 random variable on 1 degree of
freedomdegree of freedom.

• Note that

E[Z2] = 1 (5)

 a χ2 random variable on 1 degree of freedom has expected value
1.

On the next slide, we check that Z2 is χ2 by simulation, using dchisq().
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The χ2 Random Variables

Y <- Zˆ2

hist(Y, freq=FALSE)

curve(dchisq(x, df = 1), 0, 6, add=TRUE, col=2)
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χ2 random variables can be generated using rchisq():

rchisq(5, df = 1)

## [1] 0.00385 6.82201 0.00743 0.29101 0.12279
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The χ2 Random Variables

• If Z1, . . . , Zn is a sequence of n independent standard normal
random variables, then

X =
n∑

j=1

Z2
j (6)

is a χ2
(n) random variable on n degrees of freedom.

•

E[
n∑

j=1

Z2
j ] = n (7)

51



The χ2 Random variables

1000 simulated values of X for the case where n = 7

X <- rchisq(1000, df = 7)

hist(X, freq = FALSE, main = " ")

curve(dchisq(x, df = 7), from = 0, to = 25, add = TRUE)
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The χ2 Random variables

• if µ was known, but σ2 was unknown, we could estimate σ2 from a
sample of Y ’s in an unbiased manner by using the formula

σ̂2 =
1

n

n∑
j=1

(Yj − µ)2. (8)

• Unbiasedness follows from noting that

E[σ̂2] =
1

n

n∑
j=1

E[(Yj − µ)2] = σ2. (9)

• σ̂2/σ2 =
∑

(yi−µ)2

nσ2 is a χ2 random variable on n degrees of freedom.

• Usually µ is not known. Then, S2
Y (which is σ̂2 with µ replaced by Ȳ )

is an unbiased estimator for σ2, and (n− 1)S2
Y /σ

2 is a χ2 random
variable on n− 1 degrees of freedom.

53



Demonstration of Connection Between S2 and χ2

Let us consider a random samples of n = 20 normal random variables,
each with mean 3 and standard deviation 2, and let us draw 1000 such
samples.

We will show that (n− 1)S2/σ2 has a χ2 distribution on 19 degrees of
freedom:

m <- 1000; n <- 20; sigma <- 2

# m samples of size n:

Z <- matrix(rnorm(m*n, mean = 3, sd = sigma), nrow=n)

S2z <- apply(Z, 2, var)

sqrt(S2z[1:5]) # look at the first 5 sample standard deviations

## [1] 1.28 2.41 1.86 1.77 2.27

These are scattered about σ = 2.
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Demonstration of Connection Between S2 and χ2

Compare the relative frequency histogram of (n− 1)S2/σ2 with the χ2

density curve:

hist((n-1)*S2z/sigmaˆ2, freq = FALSE, main = " ")

curve(dchisq(x, df = 19), 0, 40, col = 2, add = TRUE)
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The histogram approximates the density curve closely. Exercise: check this result for
other sample sizes, such as n = 2,5,10,50. Try different values of the µ and σ as well.
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