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More detail on the Exponential Distribution

Another Approach to Simulating Poisson Processes

Simulating Conditional Distributions

Monte Carlo Integration

Rejection Sampling - a way to simulate more complicated distributions




Exponential random variables are used as simple models for such things
as failure times of mechanical or electronic components, or for the time
it takes a server to complete service to a customer. The exponential
distribution is characterized by a constant failure rate, denoted by .

T has an exponential distribution with rate \ > O if

P(T<t)=1—e M

for any non-negative t.




Exponential Probabilities

pexp (g, rate)
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Example

pexp(l, rate

## [1] 0.9502129




Differentiating the right hand side of the distribution function with
respect to ¢ gives the exponential probability density function:

£(t) = Ae M.

The dexp() function can be used to evaluate this. It takes the same
arguments as the pexp() function. The gexp() function can be used to
obtain quantiles of the exponential distribution.

The expected value of an exponential random variable is 1 /), and the
variance is 1/)\°.




A simple way to simulate exponential pseudorandom variates is based
on the inversion method.

For an exponential random variable F'(z) = 1 — e~ *%, so
F~Y(U) = _|09(%\—U)_

Therefore, for any x € (0, 1), we have
P(F(T) <z) =P(T < F () = F(F '(2)) ==

Thus, F(T) is a uniform random variable on the interval (0, 1).




Generate a uniform pseudorandom variable U on [0,1], and set
1—e M=y
Solving this for 7, we have

log(1 —U)
5 .
T has an exponential distribution with rate ).




The R function rexp() can be used to generate n random exponential
variates.

rexp(n, rate)
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Example

servicetimes <- rexp (10,

servicetimes
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Example

## [1] 0.1884296 0.1467667 0.4509145 0.1104748
## [5] 0.3304051 0.3523051 0.9007785 0.3800181
## [9] 0.5902491 0.2487142

sum(servicetimes)

## [1] 3.699056




It can be shown that the points of a homogeneous Poisson process with
rate )\ on the line are separated by independent exponentially distributed
random variables which have mean 1 /).

This leads to another simple way of simulating a Poisson process on the
line.
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Example

(25,

.243522
.184172
.154919
.9704677
.310911
. 766072
.477939

rate

.524950
.193563
.915369
.977002
.052011 12
.936573 17

.656004
. 1331777
.102377
9.
.232306
.216926

248910

.917379
.193292
.7197579
. 745159
.860722
.253731
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We can simulate random numbers from certain conditional distributions
by first simulating according to an unconditional distribution, and then
rejecting those numbers which do not satisfy the specified condition.
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Example

x <— rnorm(100000) # simulate

x <— x[(0 < x) & (x < 3)] # reject
hist (x, probability=TRUE) # show t
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Suppose g(x) is any function that is integrable on the interval [a, b].

The integral
b
/ g(x)dx

a

gives the area of the region with « < = < b and y between 0 and g(x)
(where negative values count towards negative areas).

Monte Carlo integration uses simulation to obtain approximations to
these integrals. It relies on the law of large numbers.
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This law says that a sample mean from a large random sample will tend
to be close to the expected value of the distribution being sampled.

If we can express an integral as an expected value, we can approximate
it by a sample mean.
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For example, let Uy, U>, ..., U, be independent uniform random
variables on the interval [a, b]. These have density f(u) = 1/(b — a) on

that interval. Then

Blol = [ gty

so the original integral ffj g(x)dx can be approximated by b — a times a
sample mean of g(U;).

du
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Example

u <— runif (100000)
mean (u~4)

## [1] 0.1986411
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Example

u <- runif (100000, min

mean (sin (u) ) * (5-2)

## [1] —-0.7091414



Now let V1, V>, ..., V,, be an additional set of independent uniform
random variables on the interval [0, 1], and suppose g(x,y) iS how an
integrable function of the two variables x and y. The law of large
numbers says that

n

im S g(U;, Vi) /n = /O1 /Olg<a:,y>dxdy

n—oo
1=1

with probability 1.

So we can approximate the integral [ |3 g(z, y)dzdy by generating two
sets of independent uniform pseudorandom variates, computing
g(U;, V;) for each one, and taking the average.
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Example

U <- runif (100000, min
V <- runif (100000, min

mean (sin (U — V) ) %42

## [1] 0.1331901



The uniform density is by no means the only density that can be used in
Monte Carlo integration.

If the density of X is f(z), then

Blg(X)/F(X)] = [lg@)/f@]f(@)dz = [ g(z)de

so we can approximate the latter by sample averages of ¢(X)/f(X).
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Example

X <— rexp(100000)
mean( exp( —(X + 1)"2 ) / dexp(X) )

## [1] 0.1388715



Monte Carlo integration is not always successful: sometimes the ratio
9(X)/f(X) varies so much that the sample mean doesn’t converge.

Try to choose f(x) so this ratio is roughly constant, and avoid situations
where g(x)/f(x) can be arbitrarily large.
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The simulation methods discussed so far will only work for particular
types of probability densities or distributions.

General purpose simulation methods can be used to draw
pseudorandom samples from a wide variety of distributions.
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The idea of rejection sampling was used earlier to sample from a
conditional distribution: sample from a convenient distribution, and
select a subsample to achieve the target distribution.

We will show how to use rejection sampling to draw a random sample
from a univariate density or probability function ¢(x), using a sequence
of two examples.
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Simulate pseudorandom variates from the triangular density function

() = 1—|1—2z|, 0<z<?2
I\ =1 o, otherwise
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Example

par (mfrow=e(1l, 2
curve ( (1-abs (1- = = 3, ylab="1-]11-x|")

curve ( (1-abs (1- 3, ylab="1-]1-x|")
lines(c(0,2,2,0,




If we could draw points uniformly from the triangular region below the
density, the z-coordinate would be distributed with density ¢(x).

The right hand panel of the figure shows that the graph where the
density is nhonzero can be entirely contained in a rectangle of height 1
and width 2.

A subset of uniformly distributed points in the rectangle will be
uniformly distributed in the triangular area under the triangular density.
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Thus, a strategy for simulating values from the triangular density is:

1. Simulate a point (U7, U>) uniformly in the rectangle.

2. If (U1,U>») is located within the triangular region, accept U; as a
pseudorandom variate; otherwise, reject it, and return to step 1.
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Simulating from the Triangular Density

Ul <— runif (100000, max=2)
U2 <= runif (100000)

X <= Ul[U2 < (1 - abs (1 - Ul))]



How did we do?

hist (X)
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How did we do?

hist (X, freg=FALSE) # total area = 1
curve (l-abs(l1-x), -.5, 2.5, add=TRUERE)
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