
Continuous Random Variables II

COSC/DATA 405/505

1

More on Continuous Random Variable Simulation

More detail on the Exponential Distribution

Another Approach to Simulating Poisson Processes

Simulating Conditional Distributions

Monte Carlo Integration

Rejection Sampling - a way to simulate more complicated distributions

2

Exponential Random Variables

Exponential random variables are used as simple models for such things
as failure times of mechanical or electronic components, or for the time
it takes a server to complete service to a customer. The exponential
distribution is characterized by a constant failure rate, denoted by λ.

T has an exponential distribution with rate λ > 0 if

P(T ≤ t) = 1− e−λt

for any non-negative t.

3

Exponential Probabilities

The pexp() function can be used to evaluate the distribution function.

pexp(q, rate)

The output from this is the value of P (T ≤ q), where T is an exponential
random variable with parameter rate.

4

Example

Suppose the service time at a bank teller can be modeled as an
exponential random variable with rate 3 per minute.

Then the probability of a customer being served in less than 1 minute is

pexp(1, rate = 3)

[1] 0.9502129

Thus, P (X ≤ 1) = 0.95, when X is an exponential random variable with
rate 3.

5

Exponential Density Function and Moments

Differentiating the right hand side of the distribution function with
respect to t gives the exponential probability density function:

f(t) = λe−λt.

The dexp() function can be used to evaluate this. It takes the same
arguments as the pexp() function. The qexp() function can be used to
obtain quantiles of the exponential distribution.

The expected value of an exponential random variable is 1/λ, and the
variance is 1/λ2.

6

Exponential Pseudorandom Numbers

A simple way to simulate exponential pseudorandom variates is based
on the inversion method.

For an exponential random variable F (x) = 1− e−λx, so
F−1(U) = −log(1−U)

λ .

Therefore, for any x ∈ (0,1), we have

P (F (T) ≤ x) = P (T ≤ F−1(x)) = F (F−1(x)) = x.

Thus, F (T) is a uniform random variable on the interval (0,1).

7

Algorithm to Compute Exponential Pseudorandom Numbers

Generate a uniform pseudorandom variable U on [0,1], and set

1− e−λT = U

Solving this for T , we have

T = −
log(1− U)

λ
.

T has an exponential distribution with rate λ.

8

Exponential Pseudorandom Numbers

The R function rexp() can be used to generate n random exponential
variates.

rexp(n, rate)

9

Example

A bank has a single teller who is facing a lineup of 10 customers. The
time for each customer to be served is exponentially distributed with
rate 3 per minute. We can simulate the service times (in minutes) for the
10 customers.

servicetimes <- rexp(10, rate = 3)

servicetimes

10

Example

[1] 0.1884296 0.1467667 0.4509145 0.1104748

[5] 0.3304051 0.3523051 0.9007785 0.3800181

[9] 0.5902491 0.2487142

The total time until these 10 simulated customers will complete service
is around 4 minutes.

sum(servicetimes)

[1] 3.699056

11

Another way to simulate a Poisson process

It can be shown that the points of a homogeneous Poisson process with
rate λ on the line are separated by independent exponentially distributed
random variables which have mean 1/λ.

This leads to another simple way of simulating a Poisson process on the
line.

12

Example

Simulate the first 25 points of a Poisson 1.5 process, starting from 0.

X <- rexp(25, rate = 1.5)

cumsum(X)

[1] 1.243522 1.524950 1.656004 2.917379

[5] 3.184172 3.193563 3.733177 4.193292

[9] 5.154919 5.915369 8.102377 8.797579

[13] 8.970467 8.977002 9.248910 11.745159

[17] 11.810911 12.052011 12.232306 14.860722

[21] 15.766072 15.936573 17.216926 18.253731

[25] 19.477939

13

Simulating Numbers that Follow Conditional Distributions

We can simulate random numbers from certain conditional distributions
by first simulating according to an unconditional distribution, and then
rejecting those numbers which do not satisfy the specified condition.

14

Example

Simulate x from the standard normal distribution, conditional on the
event that 0 < x < 3. We will simulate from the entire normal distribution
and then accept only those values which lie between 0 and 3.
We can simulate a large number of such variates as follows:

x <- rnorm(100000) # simulate from the standard normal
x <- x[(0 < x) & (x < 3)] # reject all x's outside (0,3)
hist(x, probability=TRUE) # show the simulated values

Histogram of x

x

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

This plot shows how the histogram
tracks the rescaled normal density over
the interval (0,3).

15

Monte Carlo Integration

Suppose g(x) is any function that is integrable on the interval [a, b].

The integral ∫ b

a
g(x)dx

gives the area of the region with a < x < b and y between 0 and g(x)
(where negative values count towards negative areas).

Monte Carlo integration uses simulation to obtain approximations to
these integrals. It relies on the law of large numbers.

16

Monte Carlo Integration

This law says that a sample mean from a large random sample will tend
to be close to the expected value of the distribution being sampled.

If we can express an integral as an expected value, we can approximate
it by a sample mean.

17

Monte Carlo Integration

For example, let U1, U2, . . . , Un be independent uniform random
variables on the interval [a, b]. These have density f(u) = 1/(b− a) on
that interval. Then

E[g(Ui)] =
∫ b

a
g(u)

1

b− a
du

so the original integral
∫ b
a g(x)dx can be approximated by b− a times a

sample mean of g(Ui).

18

Example

To approximate the integral
∫ 1
0 x

4dx, use the following lines:

u <- runif(100000)

mean(uˆ4)

[1] 0.1986411

Compare with the exact answer, 0.2, which can easily be computed.

19

Example

To approximate the integral
∫ 5
2 sin(x)dx, use the following lines:

u <- runif(100000, min = 2, max = 5)

mean(sin(u))*(5-2)

[1] -0.7091414

The true value can be shown to be -0.700.

20

Multiple integration

Now let V1, V2, . . . , Vn be an additional set of independent uniform
random variables on the interval [0,1], and suppose g(x, y) is now an
integrable function of the two variables x and y. The law of large
numbers says that

lim
n→∞

n∑
i=1

g(Ui, Vi)/n =
∫ 1

0

∫ 1

0
g(x, y)dxdy

with probability 1.

So we can approximate the integral
∫ 1
0

∫ 1
0 g(x, y)dxdy by generating two

sets of independent uniform pseudorandom variates, computing
g(Ui, Vi) for each one, and taking the average.

21

Example

Approximate the integral
∫ 10
3

∫ 7
1 sin(x− y)dxdy using the following:

U <- runif(100000, min = 1, max = 7)

V <- runif(100000, min = 3, max = 10)

mean(sin(U - V))*42

[1] 0.1331901

The factor of 42 = (7− 1)(10− 3) compensates for the joint density of
U and V being f(u, v) = 1/42.

22

Using non-uniform pseudorandom numbers

The uniform density is by no means the only density that can be used in
Monte Carlo integration.

If the density of X is f(x), then

E[g(X)/f(X)] =
∫
[g(x)/f(x)]f(x)dx =

∫
g(x)dx

so we can approximate the latter by sample averages of g(X)/f(X).

23

Example

To approximate the integral
∫∞
1 exp(−x2)dx, write it as∫ ∞

0
exp[−(x+1)2]dx,

and use an exponential distribution for X:

X <- rexp(100000)

mean(exp(-(X + 1)ˆ2) / dexp(X))

[1] 0.1388715

The true value of this integral is 0.1394.

24

Caution

Monte Carlo integration is not always successful: sometimes the ratio
g(X)/f(X) varies so much that the sample mean doesn’t converge.

Try to choose f(x) so this ratio is roughly constant, and avoid situations
where g(x)/f(x) can be arbitrarily large.

25

Advanced Simulation Methods

The simulation methods discussed so far will only work for particular
types of probability densities or distributions.

General purpose simulation methods can be used to draw
pseudorandom samples from a wide variety of distributions.

26

Rejection sampling

The idea of rejection sampling was used earlier to sample from a
conditional distribution: sample from a convenient distribution, and
select a subsample to achieve the target distribution.

We will show how to use rejection sampling to draw a random sample
from a univariate density or probability function g(x), using a sequence
of two examples.

27

Example

Simulate pseudorandom variates from the triangular density function

g(x) =

{
1− |1− x|, 0 ≤ x < 2
0, otherwise

28

Example
par(mfrow=c(1,2))
curve((1-abs(1-x))*(x<2)*(x>0), from = -1, to = 3, ylab="1-|1-x|")
curve((1-abs(1-x))*(x<2)*(x>0), from = -1, to = 3, ylab="1-|1-x|")
lines(c(0,2,2,0,0),c(0,0,1,1,0), lty=2)

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

1−
|1

−
x|

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x
1−

|1
−

x|

The graph of the triangular density function on (0,2), together with a dashed rectangle
in the right hand panel.

29

Rejection Sampling Example

If we could draw points uniformly from the triangular region below the
density, the x-coordinate would be distributed with density g(x).

The right hand panel of the figure shows that the graph where the
density is nonzero can be entirely contained in a rectangle of height 1
and width 2.

A subset of uniformly distributed points in the rectangle will be
uniformly distributed in the triangular area under the triangular density.

30

Simulating from the Triangular Density

Thus, a strategy for simulating values from the triangular density is:

1. Simulate a point (U1, U2) uniformly in the rectangle.

2. If (U1, U2) is located within the triangular region, accept U1 as a
pseudorandom variate; otherwise, reject it, and return to step 1.

31

Simulating from the Triangular Density

Since the triangular density occupies half of the area of the rectangle,
we would expect to sample roughly 2 uniform points from the rectangle
for every point we accept from the triangular distribution.

In vectorized form, the steps are:

U1 <- runif(100000, max=2)

U2 <- runif(100000)

X <- U1[U2 < (1 - abs(1 - U1))]

The vector X will contain approximately 50000 simulated values from the
triangular distribution.

32

How did we do?

hist(X)

Histogram of X

X

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
10

00
20

00
30

00
40

00

... looks okay, but ...
33

How did we do?

It is easier to check if we include an overlaid density curve:

hist(X, freq=FALSE) # total area = 1

curve(1-abs(1-x), -.5, 2.5, add=TRUE)

Histogram of X

X

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

34

