
COSC/DATA 405/505

Modeling and Simulation

1

Hidden Markov Models
Outline

• A Simple Hidden Markov Model
• Dynamic Programming - How to get from New York to LA in a hurry
• The Basic Idea of the Viterbi Algorithm
• Built-in Software
• An Example Using Simulated Data
• Application to Windspeed Data

set.seed(222696) # use this to reproduce output

2

A Simple Hidden Markov Model

Suppose we observe data on a discrete random variable Y :
1,0,0,0,1,1,0.

We can model this as Bernoulli data, but we suspect there is some
hidden dependence.

So we choose to model it as

Yj = B(0.25 + 0.5Xj)

where Xj is a Bernoulli random variable which is part of an underlying
(hidden) Markov chain.

Note that P (Yj = 1|Xj = 1) = .75 and P (Yj = 1|Xj = 0) = .25. These
are called emission probabilities.

3

A Simple Hidden Markov Model

Since Xj is part of a Markov chain, we need a transition matrix. Since
there are two hidden states, the transition matrix is 2× 2, For example,

P =

[
1/3 2/3
2/3 1/3

]
.

Together, the emission probabilities and the transition matrix make up a
Hidden Markov Model (HMM).

4

A Simple Hidden Markov Model

Usually, we do not know the emission probabilities PE or the transition
probabilities P .

These are usually estimated by maximizing the likelihood function:

L(PE, P) = P (Y1, Y2, . . . , Yn).

Because the Yj’s are not independent, we need to be careful how to
evaluate the likelihood.

5

A Simple Hidden Markov Model

What we can calculate easily:

P (Y1, Y2, . . . , Yn|X1, X2, . . . , Xn) = Πn
j=1(.25+.5Xj)

Yj(.75−.5Xj)
1−Yj .

P (X1, . . . , Xn) = P (X1)P (X2|X1) · · ·P (Xn|Xn−1)

Taking the product of these, we can calculate:

P (X1, . . . , Xn, Y1, . . . , Yn)

We then have to sum over all combinations of the Xs to get the
likelihood, a big job.

6

Dynamic Programming

Dynamic programming is an optimization procedure due to Richard
Bellman (early 1960’s) which efficiently finds the minimum distance
route through a network.

Consider the problem of driving from New York to Los Angeles. There
are many possible routes.

Dynamic programming allows us to break the bigger network problem
into a set of smaller network problems which can be solved recursively.

7

Find Shortest Route from New York to Los Angeles

Los Angeles

San Diego

Las Vegas

Phoenix

Dallas

Nashville

St. Louis

Cleveland

Pittsburgh

New York
463

371

557

602

561

1598

1796

1639

664

1065

1358
120

373

270

355

Distances in Miles Between U.S. Cities

8

Find Shortest Route from New York to Los Angeles

Los Angeles (2841)

San Diego (2926)

Las Vegas (2571)

Phoenix
(2571)

Dallas (1594)

Nashville (932)

St. Louis (973 = Min{1020, 973})

Cleveland
(463)

Pittsburgh
(371)

New York (0)
463

371

557

602

561

1598

1796

1639

664

1065

1358
120

373

270

355

Distances in Miles Between U.S. Cities

9

Find Shortest Route from New York to Los Angeles

Los Angeles (2841)

San Diego (2926)

Las Vegas (2571)

Phoenix
(2571)

Dallas (1594)

Nashville (932)

St. Louis (973 = Min{1020, 973})

Cleveland
(463)

Pittsburgh
(371)

New York (0)
463

371

557

602

561

1598

1796

1639

664

1065

1358
120

373

270

355

Distances in Miles Between U.S. Cities

Length of shortest route from NYC to LA: 2841 Miles
Which route was taken?

2841 – 270 (Las Vegas) = 2571
2841 – 373 (Phoenix) < 2571 x
2841 – 120 (San Diego) < 2926 x --> Las Vegas

2571 – 1598 (St. Louis) = 973
2571 – 1796 (Nashville) < 932 x --> St. Louis

973 – 557 (Cleveland) < 463 x
973 – 602 (Pittsburgh) = 371 --> Pittsburgh

--> Shortest Route: NYC -> Pittsburgh -> St. Louis -> Las Vegas -> LA

10

The Basic Idea of the Viterbi Algorithm ... and Something Better

Dynamic programming can also be used to maximize quantities through
a network.

The Viterbi algorithm employs dynamic programming to find the most
likely sequence of hidden Markov chain states which could give rise to
the observed data.

Using the Viterbi path, we can calculate a kind of maximum likelihood
estimate for the emission probability matrix and the transition matrix,
based on the empirical proportions of time we observe the Y values,
given the “observed” X values, and given the proportion of time we
“observe” X values, given the preceding X values.

The Baum-Welch algorithm is an implementation of the
Expectation-Maximization (EM) algorithm which calculates the exact
maximum likelihood estimates of the parameters, given the Y

observations.
11

Built-in Software - the depmixS4 package

The function depmix() can be used to fit general purpose Hidden
Markov Models.

Its use goes beyond the scope of this module.

Instead, we focus on a simpler-to-use package, HMM, which can be used
to fit and simulate discrete-time discrete-state Hidden Markov Models.

12

Built-in Software - the HMM package

We illustrate the use of the software for the Hidden Markov Model for
which the transition matrix for the hidden 2 state Markov chain X is

P =

[
1/3 2/3
2/3 1/3

]
and the emission matrix for the probability distributions of the observed
values Y , given X is

E =

[
3/4 1/4
1/4 3/4

]

The state space of the Markov chain is S = {0,1}.

The first row of the emission corresponds to the distribution of Y , given
X = 0 and the second row corresponds to X = 1.

We assume that the observed data are Y = 1,0,0,0,1,1,0.

13

Built-in Software - the HMM package

We load the package, enter the information about the transition and
emission matrices as well as the observed data.

library(HMM)

hmm <- initHMM(c("0","1"), c("0","1"),

transProbs=matrix(c(1, 2, 2, 1)/3,2),

emissionProbs=matrix(c(3, 1, 1, 3)/4, 2))

observations <- as.character(c(1, 0, 0, 0, 1, 1, 0))

Using the viterbi function, we can calculate the Viterbi path, the most
likely X values:

viterbi <- viterbi(hmm, observations)

print(viterbi)

[1] "1" "0" "1" "0" "1" "1" "0"

14

Training (Estimating) the HMM from Y Observations

Based on the preceding Viterbi sequence, we could get estimates of the
transition matrix elements by calculating the proportion of the various
transitions.

In the example, the Markov chain appears to have visited state 0 two
times, not including the last value.

The Markov chain entered state 1 both times, so we would estimate the
P01 to be 1 and P00 as 0. Similarly, we would estimate P10 as 3/4 and
P11 as 1/4.

We can also estimate the emission probabilities by estimating the
distribution of Y for each value of X: P (Y = 0|X = 0) = 2/3 and
P (Y = 1|X = 0) = 1/3. P (Y = 0|X = 1) = 1/4 and
P (Y = 1|X = 1) = 3/4.

15

Training (Estimating) the HMM from Y Observations

1. Begin with an initial guess as to the transition matrix and emission
matrix.

2. Apply the Viterbi algorithm to the Y observations to obtain the most
probable set of X observations, using the most recent estimates of
the transition and emission matrices.

3. Use the Viterbi sequence of X’s to estimate the transition matrix
probabilities and the emission matrix probabilities.

4. Return to step 2, unless the transition and emission matrices have
converged to within a given tolerance.

The function viterbiTraining is an implementation of this algorithm.
16

An Example Using Simulated Data

We simulate X’s from a two state Markov chain, and use these to
generate Y observations which take values 0, 1 and 2, according to
different distributions, depending on the corresponding value of X.

The transition matrix for the hidden Markov chain X:

P =

[
0.1 0.9
0.2 0.8

]

The emission matrix for the probability distributions of the observed
values Y , given X:

E =

[
0.75 0.2 0.05
0.05 0.4 0.55

]

The first row corresponds to the distribution of Y , given X = 0 and the
second row corresponds to X = 1.

17

An Example Using Simulated Data
P <- matrix(c(.1, .9, .2, .8), nrow=2, byrow=TRUE)
E <- matrix(c(.75, .2, 0.05, .05, 0.4, .55), nrow=2, byrow=TRUE)
current.state <- 1; n <- 500
X <- numeric(n); Y <- numeric(n)
for (i in 1:n) {

current.state <- sample(0:1, size = 1, prob = P[current.state+1,])
X[i] <- current.state
Y[i] <- sample(0:2, size = 1, prob = E[current.state+1,])

}

First few simulated observations:

Y[1:5]

[1] 1 0 1 2 1

18

An Example Using Simulated Data

Fitting the HMM to the data, using an arbitrary starting guess for the
emission matrix and the transition matrix.
hmm <- initHMM(c("0","1"), c("0","1", "2"),

transProbs=matrix(c(.5, .5, .5, .5),2),
emissionProbs=matrix(c(.5, .4, .1, .8, .05, .15), 2))

observations <- as.character(Y)
simDataFit <- viterbiTraining(hmm, observations)

19

An Example Using Simulated Data

The output from the algorithm includes the estimated transition matrix
and emission matrix:
print(simDataFithmmtransProbs) # transition matrix estimate

to
from 0 1
0 0.1276596 0.8723404
1 0.2024691 0.7975309

print(simDataFithmmemissionProbs) # emission matrix estimate

symbols
states 0 1 2
0 1 0.0000000 0.0000000
1 0 0.4408867 0.5591133

The estimated matrices are not terribly far from the truth, but there is still considerable
error. Note that the sample size is fairly large, and we are fitting a very simple model.

20

An Example Using Simulated Data

We can see how well our model did by comparing the original hidden
Markov chain values with the most probable sequence that would be
generated from the fitted Hidden Markov Model:
table(viterbi(simDataFit$hmm, observations), X)

X
0 1
0 69 25
1 31 375

21

Application to the Windspeed Data

Data preparation:

source("wind.R")

ws <- wind$h12 # Winnipeg noon hour windspeed (kmh)

wsCut <- cut(ws, c(-1e-10, 15, 22, 35, 45, 80))

levels(wsCut) # see what the cut function did

[1] "(-1e-10,15]" "(15,22]" "(22,35]" "(35,45]"

[5] "(45,80]"

levels(wsCut) <- c("N", "L", "M", "H", "E")

Nil, Low, Moderate, High, Extreme

WindStates <- factor(wsCut, ordered = TRUE)

22

Application to the Windspeed Data

Set up an initial guess for the HMM:

WindHMM <- initHMM(c("0","1","2"), levels(WindStates),

transProbs=matrix(c(2, 1, 1, 1, 2, 2, 3, 3, 3)/6, 3),

emissionProbs=matrix(c(4, 2, 0, 3, 2, 1, 2, 2, 2, 1,

2, 3, 0, 2, 4)/10, nrow=3))

23

Application to the Windspeed Data

Viewing the transition matrix and emissions probabilities for the initial
guess:

print(WindHMM$transProbs)

to

from 0 1 2

0 0.333 0.167 0.5

1 0.167 0.333 0.5

2 0.167 0.333 0.5

print(WindHMM$emissionProbs)

symbols

states N L M H E

0 0.4 0.3 0.2 0.1 0.0

1 0.2 0.2 0.2 0.2 0.2

2 0.0 0.1 0.2 0.3 0.4

24

Application to the Windspeed Data

Interpretation of the initial guess emissions probability matrix PE:

PE[i, j] = P (Y = j|X = i)

where X is the current state of the hidden Markov chain, and Y is the
current observation.

e.g. PE[2,3] = 0.2 so the probability of Moderate wind when in Markov
Chain state 1 is 0.2.

25

Application to the Windspeed Data

Fitting the Hidden Markov Model by finding transition probabilities and
emission probabilities to maximize the likelihood:

WindHMMFit <- viterbiTraining(WindHMM, WindStates)

26

Application to the Windspeed Data

Viewing the transition matrix and emissions probabilities for the fitted
model:
print(WindHMMFithmmtransProbs)

to
from 0 1 2
0 0.8047 0.0000 0.1953
1 0.0000 0.0000 1.0000
2 0.2020 0.2424 0.5556

print(WindHMMFithmmemissionProbs)

symbols
states N L M H E
0 0.5560 0.3739 0.07007 0.0000 0.0000
1 0.5623 0.4377 0.00000 0.0000 0.0000
2 0.0000 0.0000 0.79976 0.1557 0.0445

27

Application to the Windspeed Data

Simulate from the fitted model:

WindSim <- simHMM(WindHMMFit$hmm, length(WindStates))

We have simulated the same number of observations as in the original
data set.

28

Application to the Windspeed Data

Compare run lengths of the various states:
table(rle(as.character(WindStates)))

values
lengths E H L M N
1 133 409 1017 1028 1031
2 7 49 217 410 307
3 1 6 37 175 115
4 0 0 13 74 39
5 0 0 4 28 22
6 0 0 3 14 8
7 0 0 0 2 6
8 0 0 1 3 4
9 0 0 0 1 2

29

Application to the Windspeed Data
table(rle(WindSim$observation))

values
lengths E H L M N
1 148 437 1031 943 1107
2 4 51 176 404 291
3 0 4 58 178 107
4 0 0 15 87 36
5 0 0 2 40 19
6 0 0 2 9 5
7 0 0 0 8 3
8 0 0 0 3 2
9 0 0 0 0 2
12 0 0 0 1 1

We have use the rle() (Run Length Encoding) function which computes the lengths and values of runs
of equal values in a vector.

30

Application to the Windspeed Data

One year of the original data:

par(mar=c(4, 4, 1, 1))

ts.plot(WindStates[1:365], ylab="ws (1960)")

Time

w
s

(1
96

0)

0 100 200 300

1
2

3
4

5

31

Application to the Windspeed Data

Including information on the most likely hidden states:

HiddenStates <- viterbi(WindHMMFit$hmm, WindStates[1:365])

par(mar=c(4, 4, 1, 4))

ts.plot(WindStates[1:365], ylab="ws (1960)", ylim=c(0, 5))

lines(1:365, as.numeric(HiddenStates)/2, col=2, lwd=2)

axis(side = 4, at=0:5, labels=seq(0,10,2))

Time

w
s

(1
96

0)

0 100 200 300

0
1

2
3

4
5

0
2

4
6

8

32

Summary

1. Hidden Markov Models (HMM) provide a way to model data that have
complex dependencies in a structured way: a Markov chain for the
hidden information, together with a matrix of probability
distributions for the observed data.

2. The Viterbi algorithm provides a basic way to train the data, based
on finding the most likely path through the hidden Markov states.

3. Hidden Markov Models are an important tool in diverse areas such
as climate science, genomics, and speech processing.

33

