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Markov Chain Monte Carlo
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e A Worked Example

e Built-in Software

In what follows, the state space can be infinite or finite.
(222696)



Reversible Markov Chains

A Markov chain is said to be time-reversible if the Markov property holds
for the chain when it is time reversed:

P(Xn = fcann—l—l — Lp+41,-- ) =P(Xn = C’771|*X77,—|—1 — CCn—l—l)

Theorem

A Markov Chain with transition matrix P is reversible if there exists a
vector q such that

q;Pji = q; F;j.-



Reversible Markov Chains

For such a q, observe what happens when we multiply q by P.

The ith component of the vector qP is
© @)
> b
=1

and this is

xo
¢ > Pj=uq

1=1
if the Markov chain is reversible.

Therefore

qP =q.
~ ( Is the steady state vector for P.



Reversible Markov Chains
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Example: Symmetric Random Walk

Suppose S = {0,+1,4+2,...,+k} for some k > 2.

where B,, is Bernoulli with parameter p = .5, independent of X,,_ ;.
When X,,_ 1 = +k, X, =k — 1 (or 1 — k).

For |j| < k,
Byl = £5-1 = 0.5.
and

Pek—1=1=P k41



Example: Symmetric Random Walk

9 Pr k—1 = qr—1Pk—1 1 OF
9k = qr—1 x 0.5
and similarly,

q—f = q1—k % 0.5.
For |j| <k —1,

9P j+1 = aj+1Fj+1,; Of
05(]] = O5q]_|_1

Therefore, all ¢’s other than the g¢;. and ¢_;. are equal, and have twice the
value of ¢;. and ¢q_;..

This Markov chain is time-reversible.



Example: Symmetric Random Walk

Steady-state distribution:

1
e ok— 1D F1+1
and
1
QkZQ—k:4—k
e.g. k=
1
Q3—Q—3—E



P <- matrix(c¢(0,1,0,0,0,0,0,
.5,0,.5,0,0,0,0,0,.5,0,.5,0,0,0,

0,0,.9,0,.5,0,0,0,0,0,0.5,0, .5,0,
0,0,0,0,.5,0,.5,0, 0, 0, 0, O, 1, 0), nrow=7, byrow = TRUE




Ntransitions <-— 100000 # number of moves

location <- numeric (Ntransitions) #initializing

current.state <—- 1 # initial stock
for (t in 1:Ntransitions) {

current.state <- sample(1l:7,
size = 1, prob = P[current

location[t] <- current.state

<— table(location) /Ntransitions

location

1 2 3 4 5 6 7
0.08196 0.16490 0.16702 0.16906 0.16881 0.16604 0.08221




A <- t(P) - diag(rep(1l,7))
A <- rbind (A, rep(l,7))
RHS <- c(rep(0,7), 1)
options (digits=3)
gr.solve (A, RHS)

## [1] 0.0833 0.1667 0.1667 0.1667 0.1667 0.1667 0.0833



Other Time-Reversible Markov Chains

Suppose {7;,: = 0,4+1,+2,...} is a set of positive real numbers with
2™ = 1. (This is a probability distribution on the integers.)
Set
1 . (7 L : : :
Pij=—-min{— 1), forj=i—-2,0s—-1,i+ 1,142
’ 6 T

and 0 for | — i| > 2. P, ; is set to ensure that the row sums of P are 1.
To verify that the Markov chain is reversible, show that
i b5 40 = Ti42b40,

and so on.

This is an example of an infinite-state time-reversible Markov chain. Note
that the steady-state vector has infinite length and has :th entry ;.
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Simulating from the Infinite State Markov Chain

Example:

Suppose m; = k/(i + 1)*fori >0and r; = Oforall i < 1. kis a
constant that ensures that > °° , 7; = 1. Note that we can simulate from
this Markov chain even without knowing k.

pi.fun <- function (i) {
out <—= 0
if (1 > 0) out <-— 1/(i+1l)"4

out
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Ntransitions <- 20000
X <— numeric (Ntransitions)
current.state <- 50 # initialize the Markov chain
for (n in 1:Ntransitions) {
1 <- current.state
P <- c(min(pi.fun(i-2)/pi.fun(i), 1),
min(pi.fun(i-1)/pi.fun(i), 1),
min(pi.fun(i+l)/pi.fun(i), 1),
min (pi.fun(i+2)/pi.fun(i), 1))/6
PO <- 1 - sum(P)
P <- ¢(P[1:2], PO, P[3:4])
transition <- sample(seq(-2,2,1), size = 1, prob = P)
current.state <- current.state + transition

X[n] <- current.state

}

observedDist <—- table (X[-c(1:1000)1])




observedDist

ik
ik 1 2 3 4 5
## 14662 2865 846 334 160




Burn-In

Why omit the first 1000 observations?
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Estimating &

™™ =k/(24+ 1)* =k/81

so an estimate of k£ can be obtained by multiplying the observed
probability of a 2 by 81:

k observedDist [2]/19000%81
k
i 2

## 12.2
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Markov Chain Monte Carlo Simulation

This procedure is one version of MCMC — developed by Metropolis and
Hastings.

Procedure:

1. Given a distribution 7, known up to a proportionality constant (%),
find a time-reversible Markov chain with = as the steady state vector.

2. Simulate from that Markov chain.

3. After simulating for a long enough period (burn-in), the observed
states follow the steady state distribution, i.e. .
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Markov Chain Monte Carlo Simulation

The Law of Large Numbers for regular Markov chains allows us to
estimate quantities such as £[X] and E[g(X )] for given functions g(x)

by calculating
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MCMC Application - Bayesian Statistics

Example:

Suppose N is Poisson distributed with mean 20, and given N, X is
binomially distributed with parameters N and p = 0.5.

N is not observed, but suppose X = 5. Use MCMC to simulate the
distribution of N, given X.

Terminology: the Poisson distribution for N is the prior distribution.

the distribution of NV, given X = 5, is called the posterior distribution.
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posterior.fun <- function (i, x) {
out <- 0
if (1 >= x) out <- dpois (i, lambda = 20) %
dbinom(x, size = 1, prob =

out

pi.fun <- function (i) {

posterior.fun (i, x=5)




Ntransitions <- 20000
X <— numeric (Ntransitions)
current.state <- 40 # initialize the Markov chain
for (n in 1:Ntransitions) {

1 <- current.state

P <- c(min(pi.fun(i-2)/pi.fun(i),

1
min(pi.fun(i-1) /pi.fun (i
min(pi.fun(i+l) /pi.fun (i

1

)
)
)
)

min (pi.fun(i+2) /pi. fun (
PO <- 1 - sum(P)
P <- ¢c(P[1:2], PO, P[3:4])
transition <- sample(seq(-2,2,1), size = 1, prob = P)
current.state <- current.state + transition
X[n] <- current.state

}

observedDist <—- table (X[-c(1:1000)1])




Plotting the Trace
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options (width=50)

observedDist

ik
ik 6 7 10 11 12 13 14 15
ik 9 51 7182 1213 1747 2117 2299 2342
16 17 20 21 22 23 24 25
2092 1789 739 446 245 88 53 16
26
B




Posterior Distribution of V
( =c(1,2))
theoryDist 20000 % (0:30,
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This is how the data X = 5 influences our belief (initially, Poisson(20))
about the distribution of the unknown value V.
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posterior.fun <- function (i, x) {

out <— 0
if (1 >= x) out <- dpois (i,
dbinom(x, size =

out




Ntransitions <- 20000
X <— numeric (Ntransitions)
current.state <- 40 # initialize the Markov chain
for (n in 1:Ntransitions) {

1 <- current.state

P <- c(min(pi.fun(i-2)/pi.fun(i),

1
min(pi.fun(i-1) /pi.fun (i
min(pi.fun(i+l) /pi.fun (i

1

)
)
)
)

min (pi.fun(i+2) /pi. fun (
PO <- 1 - sum(P)
P <- ¢c(P[1:2], PO, P[3:4])
transition <- sample(seq(-2,2,1), size = 1, prob = P)
current.state <- current.state + transition
X[n] <- current.state

}

observedDist <—- table (X[-c(1:1000)1])




Plotting the Trace
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options (width=50)

observedDist

il

ik 5 6 7 8 9 10 11 12 13
## 2405 4982 5185 3423 1836 818 268 59 16




Posterior Distribution of V
( =c(1,2))
theoryDist 20000 (0:15, = 4)
(theoryDist) 0:15
(theoryDist, = )
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This is how the data X = 5 influences our belief (initially, Poisson(4))
about the distribution of the unknown value N.
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Using Built-In Software

Perhaps the best way to do MCMC in R is with the met rop () function in
C. Geyer’'s mcmc package:

(obj, 1nitial, nbatch, = 1, = 1,
= 1, outfun, = FALSE, ...)

Main Arguments:

e ob: an R function which evaluates the unnormalized posterior
distribution or the result of a previous call to this function.

e initial: the initial state of the Markov chain.

e scale: controls the proposal step size in the random walk used for
the Markov chain.
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