
COSC/DATA 405/505

Modelling and Simulation

1

Markov Chain Monte Carlo
Outline

• Reversible Markov Chains
• The Metropolis-Hastings Algorithm
• A First Look at Bayesian Statistics
• A Worked Example
• Built-in Software

In what follows, the state space can be infinite or finite.
set.seed(222696) # use this to reproduce output

2

Reversible Markov Chains

A Markov chain is said to be time-reversible if the Markov property holds
for the chain when it is time reversed:

P (Xn = xn|Xn+1 = xn+1, . . .) = P (Xn = xn|Xn+1 = xn+1)

Theorem

A Markov Chain with transition matrix P is reversible if there exists a
vector q such that

qjPji = qiPij.

3

Reversible Markov Chains

For such a q, observe what happens when we multiply q by P .

The ith component of the vector qP is
∞∑
j=1

qjPji

and this is

qi

∞∑
j=1

Pij = qi

if the Markov chain is reversible.

Therefore

qP = q.

 q is the steady state vector for P .

4

Reversible Markov Chains

Example: Symmetric Random Walk

Suppose S = {0,±1,±2, . . . ,±k} for some k > 2.

Xn = Xn−1 +2Bn − 1

where Bn is Bernoulli with parameter p = .5, independent of Xn−1.
When Xn−1 = ±k, Xn = k − 1 (or 1− k).

For |j| < k,

Pj,j+1 = Pj,j−1 = 0.5.

and

Pk,k−1 = 1 = P−k,−k+1.

5

Example: Symmetric Random Walk

qkPk,k−1 = qk−1Pk−1,k or

qk = qk−1 × 0.5

and similarly,

q−k = q1−k × 0.5.

For |j| < k − 1,

qjPj,j+1 = qj+1Pj+1,j or

0.5qj = 0.5qj+1.

Therefore, all q’s other than the qk and q−k are equal, and have twice the
value of qk and q−k.

This Markov chain is time-reversible.

6

Example: Symmetric Random Walk

Steady-state distribution:

qj =
1

2(k − 1) + 1+ 1

and

qk = q−k =
1

4k

e.g. k = 3:

q3 = q−3 =
1

12

q2 = q1 = q0 = q−1 = q−2 =
1

6
.

7

A Simulation Check on the Calculation

Entering the transition matrix:

P <- matrix(c(0,1,0,0,0,0,0,

.5,0,.5,0,0,0,0,0,.5,0,.5,0,0,0,

0,0,.5,0,.5,0,0,0,0,0,0.5,0,.5,0,

0,0,0,0,.5,0,.5,0, 0, 0, 0, 0, 1, 0), nrow=7, byrow = TRUE)

8

A Simulation Check on the Calculation

Simulating the random walk:

Ntransitions <- 100000 # number of moves

location <- numeric(Ntransitions)#initializing

current.state <- 1 # initial stock

for (t in 1:Ntransitions) {
current.state <- sample(1:7,

size = 1, prob = P[current.state,])

location[t] <- current.state

}
pi <- table(location)/Ntransitions

pi

location

1 2 3 4 5 6 7

0.08196 0.16490 0.16702 0.16906 0.16881 0.16604 0.08221

9

Conventional Calculation of the Steady-State Vector

A <- t(P) - diag(rep(1,7))

A <- rbind(A, rep(1,7))

RHS <- c(rep(0,7), 1)

options(digits=3)

qr.solve(A, RHS)

[1] 0.0833 0.1667 0.1667 0.1667 0.1667 0.1667 0.0833

10

Other Time-Reversible Markov Chains

Suppose {πi, i = 0,±1,±2, . . .} is a set of positive real numbers with∑∞
i=−∞ πi = 1. (This is a probability distribution on the integers.)

Set

Pi,j =
1

6
min

(
πj

πi
,1

)
, for j = i− 2, i− 1, i+1, i+2

and 0 for |j − i| > 2. Pi,i is set to ensure that the row sums of P are 1.

To verify that the Markov chain is reversible, show that

πiPi,i+2 = πi+2Pi+2,i

and so on.

This is an example of an infinite-state time-reversible Markov chain. Note
that the steady-state vector has infinite length and has ith entry πi.

11

Simulating from the Infinite State Markov Chain

Example:

Suppose πi = k/(i+1)4 for i > 0 and πi = 0 for all i < 1. k is a
constant that ensures that

∑∞
i=1 πi = 1. Note that we can simulate from

this Markov chain even without knowing k.

pi.fun <- function(i) {
out <- 0

if (i > 0) out <- 1/(i+1)ˆ4

out

}

12

Simulating from the Infinite State Markov Chain

Ntransitions <- 20000

X <- numeric(Ntransitions)

current.state <- 50 # initialize the Markov chain

for (n in 1:Ntransitions) {
i <- current.state

P <- c(min(pi.fun(i-2)/pi.fun(i), 1),

min(pi.fun(i-1)/pi.fun(i), 1),

min(pi.fun(i+1)/pi.fun(i), 1),

min(pi.fun(i+2)/pi.fun(i), 1))/6

P0 <- 1 - sum(P)

P <- c(P[1:2], P0, P[3:4])

transition <- sample(seq(-2,2,1), size = 1, prob = P)

current.state <- current.state + transition

X[n] <- current.state

}
observedDist <- table(X[-c(1:1000)])

13

Simulating from the Infinite State Markov Chain

observedDist

##

1 2 3 4 5 6 7 8 9 10

14662 2865 846 334 160 94 18 14 3 4

14

Burn-In

Why omit the first 1000 observations?

ts.plot(X)

Time

X

0 5000 10000 15000 20000

0
10

20
30

40
50

15

Estimating k

π2 = k/(2 + 1)4 = k/81

so an estimate of k can be obtained by multiplying the observed
probability of a 2 by 81:

k <- observedDist[2]/19000*81

k

2

12.2

16

Markov Chain Monte Carlo Simulation

This procedure is one version of MCMC – developed by Metropolis and
Hastings.

Procedure:

1. Given a distribution π, known up to a proportionality constant (k),
find a time-reversible Markov chain with π as the steady state vector.

2. Simulate from that Markov chain.

3. After simulating for a long enough period (burn-in), the observed
states follow the steady state distribution, i.e. π.

17

Markov Chain Monte Carlo Simulation

The Law of Large Numbers for regular Markov chains allows us to
estimate quantities such as E[X] and E[g(X)] for given functions g(x)
by calculating

1

N

N∑
n=1

Xn and
1

N

N∑
n=1

g(Xn).

18

MCMC Application - Bayesian Statistics

Example:

Suppose N is Poisson distributed with mean 20, and given N , X is
binomially distributed with parameters N and p = 0.5.

N is not observed, but suppose X = 5. Use MCMC to simulate the
distribution of N , given X.

Terminology: the Poisson distribution for N is the prior distribution.

the distribution of N , given X = 5, is called the posterior distribution.

19

MCMC Application - Bayesian Statistics

posterior.fun <- function(i, x) {
out <- 0

if (i >= x) out <- dpois(i, lambda = 20)*
dbinom(x, size = i, prob = .5)

out

}

pi.fun <- function(i) {
posterior.fun(i, x=5)

}

20

Simulating the Markov Chain

Ntransitions <- 20000

X <- numeric(Ntransitions)

current.state <- 40 # initialize the Markov chain

for (n in 1:Ntransitions) {
i <- current.state

P <- c(min(pi.fun(i-2)/pi.fun(i), 1),

min(pi.fun(i-1)/pi.fun(i), 1),

min(pi.fun(i+1)/pi.fun(i), 1),

min(pi.fun(i+2)/pi.fun(i), 1))/6

P0 <- 1 - sum(P)

P <- c(P[1:2], P0, P[3:4])

transition <- sample(seq(-2,2,1), size = 1, prob = P)

current.state <- current.state + transition

X[n] <- current.state

}
observedDist <- table(X[-c(1:1000)])

21

Plotting the Trace

ts.plot(X)

Time

X

0 5000 10000 15000 20000

5
10

20
30

40

22

Posterior Distribution of N

options(width=50)

observedDist

##

6 7 8 9 10 11 12 13 14 15

9 51 140 413 782 1213 1747 2117 2299 2342

16 17 18 19 20 21 22 23 24 25

2092 1789 1477 938 739 446 245 88 53 16

26

4

23

Posterior Distribution of N
par(mfrow=c(1,2))
theoryDist <- 20000*dpois(0:30, lambda = 20)
names(theoryDist) <- 0:30
barplot(theoryDist, main = "Prior")
barplot(observedDist, main = "Posterior")

0 4 8 13 18 23 28

Prior

0
50

0
15

00

6 9 12 16 20 24

Posterior

0
50

0
15

00

This is how the data X = 5 influences our belief (initially, Poisson(20))
about the distribution of the unknown value N .

24

What if our Prior Belief was Different?

e.g. λ = 4:

posterior.fun <- function(i, x) {
out <- 0

if (i >= x) out <- dpois(i, lambda = 4)*
dbinom(x, size = i, prob = .5)

out

}

25

Simulating the Markov Chain

Ntransitions <- 20000

X <- numeric(Ntransitions)

current.state <- 40 # initialize the Markov chain

for (n in 1:Ntransitions) {
i <- current.state

P <- c(min(pi.fun(i-2)/pi.fun(i), 1),

min(pi.fun(i-1)/pi.fun(i), 1),

min(pi.fun(i+1)/pi.fun(i), 1),

min(pi.fun(i+2)/pi.fun(i), 1))/6

P0 <- 1 - sum(P)

P <- c(P[1:2], P0, P[3:4])

transition <- sample(seq(-2,2,1), size = 1, prob = P)

current.state <- current.state + transition

X[n] <- current.state

}
observedDist <- table(X[-c(1:1000)])

26

Plotting the Trace

ts.plot(X)

Time

X

0 5000 10000 15000 20000

5
10

20
30

40

27

Posterior Distribution of N

options(width=50)

observedDist

##

5 6 7 8 9 10 11 12 13 14

2405 4982 5185 3423 1836 818 268 59 16 8

28

Posterior Distribution of N
par(mfrow=c(1,2))
theoryDist <- 20000*dpois(0:15, lambda = 4)
names(theoryDist) <- 0:15
barplot(theoryDist, main = "Prior")
barplot(observedDist, main = "Posterior")

0 2 4 6 8 11 14

Prior

0
10

00
30

00

5 7 9 11 13

Posterior

0
20

00
40

00

This is how the data X = 5 influences our belief (initially, Poisson(4))
about the distribution of the unknown value N .

29

Using Built-In Software

Perhaps the best way to do MCMC in R is with the metrop() function in
C. Geyer’s mcmc package:

metrop(obj, initial, nbatch, blen = 1, nspac = 1,

scale = 1, outfun, debug = FALSE, ...)

Main Arguments:

• obj: an R function which evaluates the unnormalized posterior
distribution or the result of a previous call to this function.
• initial: the initial state of the Markov chain.
• scale: controls the proposal step size in the random walk used for

the Markov chain.

30

