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Markov Chain Monte Carlo
Outline

• Reversible Markov Chains
• The Metropolis-Hastings Algorithm
• A First Look at Bayesian Statistics
• A Worked Example
• Built-in Software

In what follows, the state space can be infinite or finite.
set.seed(222696) # use this to reproduce output
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Reversible Markov Chains

A Markov chain is said to be time-reversible if the Markov property holds
for the chain when it is time reversed:

P (Xn = xn|Xn+1 = xn+1, . . .) = P (Xn = xn|Xn+1 = xn+1)

Theorem

A Markov Chain with transition matrix P is reversible if there exists a
vector q such that

qjPji = qiPij.
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Reversible Markov Chains

For such a q, observe what happens when we multiply q by P .

The ith component of the vector qP is
∞∑
j=1

qjPji

and this is

qi

∞∑
j=1

Pij = qi

if the Markov chain is reversible.

Therefore

qP = q.

 q is the steady state vector for P .

4



Reversible Markov Chains

Example: Symmetric Random Walk

Suppose S = {0,±1,±2, . . . ,±k} for some k > 2.

Xn = Xn−1 +2Bn − 1

where Bn is Bernoulli with parameter p = .5, independent of Xn−1.
When Xn−1 = ±k, Xn = k − 1 (or 1− k).

For |j| < k,

Pj,j+1 = Pj,j−1 = 0.5.

and

Pk,k−1 = 1 = P−k,−k+1.
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Example: Symmetric Random Walk

qkPk,k−1 = qk−1Pk−1,k or

qk = qk−1 × 0.5

and similarly,

q−k = q1−k × 0.5.

For |j| < k − 1,

qjPj,j+1 = qj+1Pj+1,j or

0.5qj = 0.5qj+1.

Therefore, all q’s other than the qk and q−k are equal, and have twice the
value of qk and q−k.

This Markov chain is time-reversible.
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Example: Symmetric Random Walk

Steady-state distribution:

qj =
1

2(k − 1) + 1+ 1

and

qk = q−k =
1

4k

e.g. k = 3:

q3 = q−3 =
1

12

q2 = q1 = q0 = q−1 = q−2 =
1

6
.
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A Simulation Check on the Calculation

Entering the transition matrix:

P <- matrix(c(0,1,0,0,0,0,0,

.5,0,.5,0,0,0,0,0,.5,0,.5,0,0,0,

0,0,.5,0,.5,0,0,0,0,0,0.5,0,.5,0,

0,0,0,0,.5,0,.5,0, 0, 0, 0, 0, 1, 0), nrow=7, byrow = TRUE)
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A Simulation Check on the Calculation

Simulating the random walk:

Ntransitions <- 100000 # number of moves

location <- numeric(Ntransitions)#initializing

current.state <- 1 # initial stock

for (t in 1:Ntransitions) {
current.state <- sample(1:7,

size = 1, prob = P[current.state, ])

location[t] <- current.state

}
pi <- table(location)/Ntransitions

pi

## location

## 1 2 3 4 5 6 7

## 0.08196 0.16490 0.16702 0.16906 0.16881 0.16604 0.08221
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Conventional Calculation of the Steady-State Vector

A <- t(P) - diag(rep(1,7))

A <- rbind(A, rep(1,7))

RHS <- c(rep(0,7), 1)

options(digits=3)

qr.solve(A, RHS)

## [1] 0.0833 0.1667 0.1667 0.1667 0.1667 0.1667 0.0833

10



Other Time-Reversible Markov Chains

Suppose {πi, i = 0,±1,±2, . . .} is a set of positive real numbers with∑∞
i=−∞ πi = 1. (This is a probability distribution on the integers.)

Set

Pi,j =
1

6
min

(
πj

πi
,1

)
, for j = i− 2, i− 1, i+1, i+2

and 0 for |j − i| > 2. Pi,i is set to ensure that the row sums of P are 1.

To verify that the Markov chain is reversible, show that

πiPi,i+2 = πi+2Pi+2,i

and so on.

This is an example of an infinite-state time-reversible Markov chain. Note
that the steady-state vector has infinite length and has ith entry πi.
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Simulating from the Infinite State Markov Chain

Example:

Suppose πi = k/(i+1)4 for i > 0 and πi = 0 for all i < 1. k is a
constant that ensures that

∑∞
i=1 πi = 1. Note that we can simulate from

this Markov chain even without knowing k.

pi.fun <- function(i) {
out <- 0

if (i > 0) out <- 1/(i+1)ˆ4

out

}

12



Simulating from the Infinite State Markov Chain

Ntransitions <- 20000

X <- numeric(Ntransitions)

current.state <- 50 # initialize the Markov chain

for (n in 1:Ntransitions) {
i <- current.state

P <- c(min(pi.fun(i-2)/pi.fun(i), 1),

min(pi.fun(i-1)/pi.fun(i), 1),

min(pi.fun(i+1)/pi.fun(i), 1),

min(pi.fun(i+2)/pi.fun(i), 1))/6

P0 <- 1 - sum(P)

P <- c(P[1:2], P0, P[3:4])

transition <- sample(seq(-2,2,1), size = 1, prob = P)

current.state <- current.state + transition

X[n] <- current.state

}
observedDist <- table(X[-c(1:1000)])
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Simulating from the Infinite State Markov Chain

observedDist

##

## 1 2 3 4 5 6 7 8 9 10

## 14662 2865 846 334 160 94 18 14 3 4
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Burn-In

Why omit the first 1000 observations?

ts.plot(X)
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Estimating k

π2 = k/(2 + 1)4 = k/81

so an estimate of k can be obtained by multiplying the observed
probability of a 2 by 81:

k <- observedDist[2]/19000*81

k

## 2

## 12.2
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Markov Chain Monte Carlo Simulation

This procedure is one version of MCMC – developed by Metropolis and
Hastings.

Procedure:

1. Given a distribution π, known up to a proportionality constant (k),
find a time-reversible Markov chain with π as the steady state vector.

2. Simulate from that Markov chain.

3. After simulating for a long enough period (burn-in), the observed
states follow the steady state distribution, i.e. π.
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Markov Chain Monte Carlo Simulation

The Law of Large Numbers for regular Markov chains allows us to
estimate quantities such as E[X] and E[g(X)] for given functions g(x)
by calculating

1

N

N∑
n=1

Xn and
1

N

N∑
n=1

g(Xn).

18



MCMC Application - Bayesian Statistics

Example:

Suppose N is Poisson distributed with mean 20, and given N , X is
binomially distributed with parameters N and p = 0.5.

N is not observed, but suppose X = 5. Use MCMC to simulate the
distribution of N , given X.

Terminology: the Poisson distribution for N is the prior distribution.

the distribution of N , given X = 5, is called the posterior distribution.
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MCMC Application - Bayesian Statistics

posterior.fun <- function(i, x) {
out <- 0

if (i >= x) out <- dpois(i, lambda = 20)*
dbinom(x, size = i, prob = .5)

out

}

pi.fun <- function(i) {
posterior.fun(i, x=5)

}
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Simulating the Markov Chain

Ntransitions <- 20000

X <- numeric(Ntransitions)

current.state <- 40 # initialize the Markov chain

for (n in 1:Ntransitions) {
i <- current.state

P <- c(min(pi.fun(i-2)/pi.fun(i), 1),

min(pi.fun(i-1)/pi.fun(i), 1),

min(pi.fun(i+1)/pi.fun(i), 1),

min(pi.fun(i+2)/pi.fun(i), 1))/6

P0 <- 1 - sum(P)

P <- c(P[1:2], P0, P[3:4])

transition <- sample(seq(-2,2,1), size = 1, prob = P)

current.state <- current.state + transition

X[n] <- current.state

}
observedDist <- table(X[-c(1:1000)])
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Plotting the Trace

ts.plot(X)
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Posterior Distribution of N

options(width=50)

observedDist

##

## 6 7 8 9 10 11 12 13 14 15

## 9 51 140 413 782 1213 1747 2117 2299 2342

## 16 17 18 19 20 21 22 23 24 25

## 2092 1789 1477 938 739 446 245 88 53 16

## 26

## 4
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Posterior Distribution of N
par(mfrow=c(1,2))
theoryDist <- 20000*dpois(0:30, lambda = 20)
names(theoryDist) <- 0:30
barplot(theoryDist, main = "Prior")
barplot(observedDist, main = "Posterior")

0 4 8 13 18 23 28

Prior

0
50

0
15

00

6 9 12 16 20 24

Posterior

0
50

0
15

00

This is how the data X = 5 influences our belief (initially, Poisson(20))
about the distribution of the unknown value N .
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What if our Prior Belief was Different?

e.g. λ = 4:

posterior.fun <- function(i, x) {
out <- 0

if (i >= x) out <- dpois(i, lambda = 4)*
dbinom(x, size = i, prob = .5)

out

}
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Simulating the Markov Chain

Ntransitions <- 20000

X <- numeric(Ntransitions)

current.state <- 40 # initialize the Markov chain

for (n in 1:Ntransitions) {
i <- current.state

P <- c(min(pi.fun(i-2)/pi.fun(i), 1),

min(pi.fun(i-1)/pi.fun(i), 1),

min(pi.fun(i+1)/pi.fun(i), 1),

min(pi.fun(i+2)/pi.fun(i), 1))/6

P0 <- 1 - sum(P)

P <- c(P[1:2], P0, P[3:4])

transition <- sample(seq(-2,2,1), size = 1, prob = P)

current.state <- current.state + transition

X[n] <- current.state

}
observedDist <- table(X[-c(1:1000)])

26



Plotting the Trace

ts.plot(X)
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Posterior Distribution of N

options(width=50)

observedDist

##

## 5 6 7 8 9 10 11 12 13 14

## 2405 4982 5185 3423 1836 818 268 59 16 8
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Posterior Distribution of N
par(mfrow=c(1,2))
theoryDist <- 20000*dpois(0:15, lambda = 4)
names(theoryDist) <- 0:15
barplot(theoryDist, main = "Prior")
barplot(observedDist, main = "Posterior")
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This is how the data X = 5 influences our belief (initially, Poisson(4))
about the distribution of the unknown value N .
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Using Built-In Software

Perhaps the best way to do MCMC in R is with the metrop() function in
C. Geyer’s mcmc package:

metrop(obj, initial, nbatch, blen = 1, nspac = 1,

scale = 1, outfun, debug = FALSE, ...)

Main Arguments:

• obj: an R function which evaluates the unnormalized posterior
distribution or the result of a previous call to this function.
• initial: the initial state of the Markov chain.
• scale: controls the proposal step size in the random walk used for

the Markov chain.
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