COSC/DATA 405/505

Modelling and Simulation

1

Markov Chain Monte Carlo

Outline

- Reversible Markov Chains
- The Metropolis-Hastings Algorithm
- A First Look at Bayesian Statistics
- A Worked Example
- Built-in Software

In what follows, the state space can be infinite or finite.

set.seed(222696) # use this to reproduce output

Reversible Markov Chains

A Markov chain is said to be *time-reversible* if the Markov property holds for the chain when it is time reversed:

$$P(X_n = x_n | X_{n+1} = x_{n+1}, \ldots) = P(X_n = x_n | X_{n+1} = x_{n+1})$$

Theorem

A Markov Chain with transition matrix *P* is reversible if there exists a vector **q** such that

$$q_j P_{ji} = q_i P_{ij}.$$

For such a q, observe what happens when we multiply q by *P*.

The *i*th component of the vector qP is

$$\sum_{j=1}^{\infty} q_j P_{ji}$$

and this is

$$q_i \sum_{j=1}^{\infty} P_{ij} = q_i$$

if the Markov chain is reversible.

Therefore

$$\mathbf{q}P = \mathbf{q}.$$

 \rightsquigarrow q is the steady state vector for P.

Example: Symmetric Random Walk

Suppose $S = \{0, \pm 1, \pm 2, ..., \pm k\}$ for some k > 2.

$$X_n = X_{n-1} + 2B_n - 1$$

where B_n is Bernoulli with parameter p = .5, independent of X_{n-1} . When $X_{n-1} = \pm k$, $X_n = k - 1$ (or 1 - k).

For |j| < k,

$$P_{j,j+1} = P_{j,j-1} = 0.5.$$

and

$$P_{k,k-1} = 1 = P_{-k,-k+1}.$$

$$q_k P_{k,k-1} = q_{k-1} P_{k-1,k}$$
 or
 $q_k = q_{k-1} \times 0.5$

and similarly,

$$q_{-k} = q_{1-k} \times 0.5.$$

For |j| < k - 1, $q_j P_{j,j+1} = q_{j+1} P_{j+1,j}$ or $0.5q_j = 0.5q_{j+1}$.

Therefore, all q's other than the q_k and q_{-k} are equal, and have twice the value of q_k and q_{-k} .

This Markov chain is time-reversible.

Steady-state distribution:

$$q_j = \frac{1}{2(k-1)+1+1}$$

and

$$q_k = q_{-k} = \frac{1}{4k}$$

e.g. *k* = 3:

$$q_3 = q_{-3} = \frac{1}{12}$$
$$q_2 = q_1 = q_0 = q_{-1} = q_{-2} = \frac{1}{6}.$$

A Simulation Check on the Calculation

Entering the transition matrix:

Simulating the random walk:

```
Ntransitions <- 100000 # number of moves
location <- numeric(Ntransitions) #initializing</pre>
current.state <- 1 # initial stock
for (t in 1:Ntransitions) {
   current.state <- sample(1:7,
        size = 1, prob = P[current.state, ])
   location[t] <- current.state</pre>
}
pi <- table (location) / Ntransitions
pi
  location
##
        1 2 3 4 5 6
##
                                                        7
## 0.08196 0.16490 0.16702 0.16906 0.16881 0.16604 0.08221
```


Conventional Calculation of the Steady-State Vector

```
A <- t(P) - diag(rep(1,7))
A <- rbind(A, rep(1,7))
RHS <- c(rep(0,7), 1)
options(digits=3)
qr.solve(A, RHS)</pre>
```

[1] 0.0833 0.1667 0.1667 0.1667 0.1667 0.1667 0.0833

Suppose $\{\pi_i, i = 0, \pm 1, \pm 2, ...\}$ is a set of positive real numbers with $\sum_{i=-\infty}^{\infty} \pi_i = 1$. (This is a probability distribution on the integers.)

Set

$$P_{i,j} = \frac{1}{6} \min\left(\frac{\pi_j}{\pi_i}, 1\right), \text{ for } j = i - 2, i - 1, i + 1, i + 2$$

and 0 for |j - i| > 2. $P_{i,i}$ is set to ensure that the row sums of P are 1.

To verify that the Markov chain is reversible, show that

$$\pi_i P_{i,i+2} = \pi_{i+2} P_{i+2,i}$$

and so on.

This is an example of an infinite-state time-reversible Markov chain. Note that the steady-state vector has infinite length and has *i*th entry π_i .

Simulating from the Infinite State Markov Chain

Example:

Suppose $\pi_i = k/(i+1)^4$ for i > 0 and $\pi_i = 0$ for all i < 1. k is a constant that ensures that $\sum_{i=1}^{\infty} \pi_i = 1$. Note that we can simulate from this Markov chain even without knowing k.

```
pi.fun <- function(i) {
    out <- 0
    if (i > 0) out <- 1/(i+1)^4
    out
}</pre>
```


Simulating from the Infinite State Markov Chain

```
Ntransitions <- 20000
X <- numeric (Ntransitions)
current.state <- 50 # initialize the Markov chain
for (n in 1:Ntransitions) {
     i <- current.state
     P <- c(min(pi.fun(i-2)/pi.fun(i), 1)),
     min(pi.fun(i-1)/pi.fun(i), 1),
     min(pi.fun(i+1)/pi.fun(i), 1),
     min(pi.fun(i+2)/pi.fun(i), 1))/6
     PO < -1 - sum(P)
     P <- c(P[1:2], P0, P[3:4])
     transition <- sample(seq(-2,2,1), size = 1, prob = P)
     current.state <- current.state + transition
     X[n] <- current.state
}
observedDist <- table(X[-c(1:1000)])
```


Simulating from the Infinite State Markov Chain

observedDist										
##										
##	1	2	3	4	5	6	7	8	9	
##	14662	2865	846	334	160	94	18	14	3	

Burn-In

Why omit the first 1000 observations?

ts.plot(X)

Estimating *k*

$$\pi_2 = k/(2+1)^4 = k/81$$

so an estimate of k can be obtained by multiplying the observed probability of a 2 by 81:

```
k <- observedDist[2]/19000*81
k
## 2
## 12.2</pre>
```


This procedure is one version of MCMC – developed by Metropolis and Hastings.

Procedure:

- 1. Given a distribution π , known up to a proportionality constant (*k*), find a time-reversible Markov chain with π as the steady state vector.
- 2. Simulate from that Markov chain.
- 3. After simulating for a long enough period (burn-in), the observed states follow the steady state distribution, i.e. π .

Markov Chain Monte Carlo Simulation

The Law of Large Numbers for regular Markov chains allows us to estimate quantities such as E[X] and E[g(X)] for given functions g(x) by calculating

$$\frac{1}{N}\sum_{n=1}^{N}X_n$$
 and $\frac{1}{N}\sum_{n=1}^{N}g(X_n)$.

MCMC Application - Bayesian Statistics

Example:

Suppose N is Poisson distributed with mean 20, and given N, X is binomially distributed with parameters N and p = 0.5.

N is not observed, but suppose X = 5. Use MCMC to simulate the distribution of N, given X.

Terminology: the Poisson distribution for N is the *prior* distribution.

the distribution of N, given X = 5, is called the *posterior* distribution.

MCMC Application - Bayesian Statistics

```
posterior.fun <- function(i, x) {
    out <- 0
    if (i >= x) out <- dpois(i, lambda = 20)*
        dbinom(x, size = i, prob = .5)
    out
}</pre>
```

```
pi.fun <- function(i) {
    posterior.fun(i, x=5)
}</pre>
```

Simulating the Markov Chain

```
Ntransitions <- 20000
X <- numeric (Ntransitions)
current.state <- 40 # initialize the Markov chain
for (n in 1:Ntransitions) {
     i <- current.state
     P <- c(min(pi.fun(i-2)/pi.fun(i), 1)),
                min(pi.fun(i-1)/pi.fun(i), 1),
                min(pi.fun(i+1)/pi.fun(i), 1),
                min(pi.fun(i+2)/pi.fun(i), 1))/6
     PO < -1 - sum(P)
     P <- c(P[1:2], P0, P[3:4])
     transition <- sample(seq(-2,2,1), size = 1, prob = P)
     current.state <- current.state + transition
     X[n] <- current.state
}
observedDist <- table(X[-c(1:1000)])
```


Plotting the Trace

ts.plot(X)

Posterior Distribution of N

options (width=50)											
observedDist											
##											
##	6	7	8	9	10	11	12	13	14	15	
##	9	51	140	413	782	1213	1747	2117	2299	2342	
##	16	17	18	19	20	21	22	23	24	25	
##	2092	1789	1477	938	739	446	245	88	53	16	
##	26										
##	4										

Posterior Distribution of N

par(mfrow=c(1,2))
theoryDist <- 20000*dpois(0:30, lambda = 20)
names(theoryDist) <- 0:30
barplot(theoryDist, main = "Prior")
barplot(observedDist, main = "Posterior")</pre>

This is how the data X = 5 influences our *belief* (initially, Poisson(20)) about the distribution of the unknown value N.

What if our Prior Belief was Different?

e.g. $\lambda = 4$:

```
posterior.fun <- function(i, x) {
    out <- 0
    if (i >= x) out <- dpois(i, lambda = 4)*
        dbinom(x, size = i, prob = .5)
    out
}</pre>
```

Simulating the Markov Chain

```
Ntransitions <- 20000
X <- numeric (Ntransitions)
current.state <- 40 # initialize the Markov chain
for (n in 1:Ntransitions) {
     i <- current.state
     P <- c(min(pi.fun(i-2)/pi.fun(i), 1)),
                min(pi.fun(i-1)/pi.fun(i), 1),
                min(pi.fun(i+1)/pi.fun(i), 1),
                min(pi.fun(i+2)/pi.fun(i), 1))/6
     PO < -1 - sum(P)
     P <- c(P[1:2], P0, P[3:4])
     transition <- sample(seq(-2,2,1), size = 1, prob = P)
     current.state <- current.state + transition
     X[n] <- current.state
}
observedDist <- table(X[-c(1:1000)])
```


Plotting the Trace

ts.plot(X)

Posterior Distribution of N

options(width=50)

observedDist

##										
##	5	6	7	8	9	10	11	12	13	14
##	2405	4982	5185	3423	1836	818	268	59	16	8

a place of mind

Posterior Distribution of *N*

par(mfrow=c(1,2))
theoryDist <- 20000*dpois(0:15, lambda = 4)
names(theoryDist) <- 0:15
barplot(theoryDist, main = "Prior")
barplot(observedDist, main = "Posterior")</pre>

This is how the data X = 5 influences our *belief* (initially, Poisson(4)) about the distribution of the unknown value N.

Perhaps the best way to do MCMC in R is with the metrop() function in C. Geyer's *mcmc* package:

```
metrop(obj, initial, nbatch, blen = 1, nspac = 1,
scale = 1, outfun, debug = FALSE, ...)
```

Main Arguments:

- obj: an R function which evaluates the unnormalized posterior distribution or the result of a previous call to this function.
- initial: the initial state of the Markov chain.
- scale: controls the proposal step size in the random walk used for the Markov chain.