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Multivariate Models: Handling More than One Measurement

• Joint distributions

• Expectation; Expected Value of Sums and Averages

• Covariance and Correlation (theoretical and empirical)

• Marginal pdfs

• Conditional pdfs

• Independence, mathematically and graphically

• Independence versus Correlation
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• Variances of Sums and Linear Combinations

• Central Limit Theorem

• Simple Linear Regression



Models for More than One Measurement

• A single measurement is modelled using a continuous random
variable X with probability density function f(x), e.g. normal,
exponential, etc.

• What if there are 2 or more measurements?

• Model each measurement with a random variable: X1, X2, . . . ,

• How do we evaluate P (a < X1 < b, c < X2 < d)?
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A Model for Two Independent Measurements

• A basic probability result says that if random events A and B are
independent, then
P (A occurs and B occurs) = P (A occurs)P (B occurs).

• This allows us to say that if the events {a < X1 < b} and
{c < X2 < d} are independent, then we can write

P (a < X1 < b, c < X2 < d) =

P (a < X1 < b)P (c < X2 < d)

=
∫ b
a
f1(y1)dy1

∫ d
c
f2(y2)dy2

=
∫ b
a

∫ d
c
f1(y1)f2(y2)dy1dy2

where f1(y1) and f2(y2) are the density functions for X1 and X2.
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A Model for Two Independent Measurements

• Set

f(y1, y2) = f1(y1)f2(y2).

• f(y1, y2) is called the joint density function for X1 and X2.

P (a < X1 < b, c < X2 < d) =∫ b
a

∫ d
c
f(y1, y2)dy1dy2

• If the measurements X1 and X2 are not independent, we can still
define f(y1, y2), the joint density function for X1 and X2.
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Joint Probability Density Function

• Properties:

1. f(y1, y2) ≥ 0

2.
∫ ∫

f(y1, y2)dy1dy2 = 1

• Computation of probabilities:

P (a < X1 < b, c < X2 < d) =∫ b
a

∫ d
c
f(y1, y2)dy1dy2

• Joint density for more than two measurements (X1, X2, . . . , Xk):

f(y1, y2, . . . , yk)
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Joint Probability Density Function

Example.

A machine is used to automatically fill cylinders with propane gas.

* X = amount of propane in a randomly selected cylinder (moles)
* T = temperature (C) at the time of filling
* model for X and T – joint density:

f(x, t) =
x+ t

5 − 13

5
, 10 ≤ x ≤ 11, 15 ≤ t ≤ 20

f(x, t) = 0 for other values of x and t

Verify that f(x, t) is a valid joint density function.
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Joint Probability Density Function

Example (cont’d).

We verify the two properties of the joint density function:

1. f(x, t) ≥ 0 for all x, t
2.
∫ ∫

f(x, t)dtdx = 1 :∫ 11

10

∫ 20

15

x+ t/5− 13

5
dtdx =

∫ 11

10

xt+ t2/10− 13t

5

∣∣∣20
15dx =

∫ 11

10
(x− 9.5)dx = 1
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Joint Probability Density Function

Example (cont’d).

Calculate the probability that the amount of propane is between 10.4 and
10.6 moles, and that the temperature is between 16 and 17 degrees.

P (10.4 < X < 10.6,16 < T < 17) =∫ 10.6

10.4

∫ 17

16

x+ t/5− 13

5
dtdx =

∫ 10.6

10.4

x− 9.7

5
dx = .032
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Joint Probability Density Function

Example 2.

* Suppose the reliability of an electric motor depends upon two critical
components, having lifetimes X and Y which can be modelled with
the joint probability density function

f(x, y) =

{
xe−x(1+y), x ≥ 0, y ≥ 0
0, otherwise

Find the probability that both components last more than 1 unit of
time.
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Joint Probability Density Function

Example 2 (cont’d).

The question asks for the probability that X is greater than 1 and Y is
greater than 1:

P (X > 1, Y > 1) =∫ ∞
1

∫ ∞
1

xe−x(1+y)dydx = e−2/2
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Expected Value

• Definition: If X1 and X2 have joint density f(y1, y2), then

E[g(X1, X2)] =
∫ ∫

g(y1, y2)f(y1, y2)dy1dy2

• Example. For the propane example of an earlier lecture, the joint pdf of
temperature and amount is

f(x, t) =
x+ t

5 − 13

5
, x ∈ (10,11), t ∈ (15,20)

The pressure in the cylinder is proportional to XT . Suppose the
relation is

P = 3XT

Find E[P ].
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Expected Value

E[P ] = E[3XT ] =
∫ 11

10

∫ 20

15
3xt

x+ t
5 − 13

5
dtdx

=
∫ 11

10

105x2 − 995x

2
dx = 568.75
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Expectations of Sums

E[X1 +X2] =
∫ ∫

(y1 + y2)f(y1, y2)dy1dy2

=
∫ ∫

y1f(y1, y2)dy1dy2 +
∫ ∫

y2f(y1, y2)dy1dy2

= E[X1] + E[X2]

E[X1 +X2 +X3] = E[X1] + E[X2] + E[X3]

E[X1 +X2 +X3 +X4] = E[X1] + E[X2] + E[X3] + E[X4]

and so on ....
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Expectations of Sums

Example. Because of contaminants in the propane, and because of
interactions among the propane gas molecules, etc., the pressure is
more accurately modelled as

P = 3XT + ε

where ε is a random variable representing all unaccounted for factors
(noise). We assume E[ε] = 0.

Find E[P ].

E[P ] = E[3XT + ε] = E[3XT ] + E[ε]

= 568.75 + 0

= 568.75
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Expected Values of Averages

Suppose X1, X2, . . . , Xn represent a sample of measurements from a
population where E[X1] = · · · = E[Xn] = µ. Then

E[X1 +X2 + · · ·+Xn] = E[X1] + E[X2] + · · ·+ E[Xn] = nµ

⇒

E[X̄] = µ

where

X̄ =
1

n

n∑
k=1

Xk
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Expected Values of Averages

Example. Measurements were taken on the amount of vibration (in
microns) produced by six electric motors all having the same type of
bearings. Each such measurement has been modelled with the density
function

f(y) =
1

10
e−(y−5)/10, y > 5

Find the expected value of the average of the 6 vibration measurements.

Letting µ denote the common expected value, we have

µ = E[X1] = · · · = E[X6] =
∫ ∞

5
y

1

10
e−(y−5)/10dy = 15

⇒

E[X̄] = µ = 15
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Covariance and Correlation

Covariance:

Cov(X1, X2) = E[X1X2]− E[X1]E[X2]

This is a measure of linear dependence between two measurements.

Correlation:

ρ = Corr(X1, X2) =
Cov(X1, X2)√
V (X1)V (X2)

This is a related measure. It can take values only between -1 and 1.

If ρ is positive, we say that there is a positive linear relationship between
X2 and X1.

If ρ is negative, we say that there is a negative linear relationship
between X2 and X1.
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Dependent Exponential Random Variables

For example, consider the random variables with the following joint
probability density function

f(x1, x2) =
λ

x1
e−λx1−x2/x1, x1, x2 ≥ 0

and 0, otherwise. We can see that X1 and X2 are positively associated
as follows.

E[X1X2] = λ
∫ ∞

0

∫ ∞
0

x1x2

x1
e−λx1−x2/x1dx1dx2 =

2

λ2
.

To compute this integral, it is necessary to use integration-by-parts
several times.

Thus,

Cov(X1, X2) =
2

λ2
−

1

λ2
=

1

λ2
.

This value is positive which means that X1 and X2 are positively related.
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Calculation of covariance and correlation for a sample

For a sample {(x11, x21), (x12, x22), . . . , (x1n, x2n)}, the sample
covariance is given by

c =
1

n− 1

n∑
j=1

(x1j − x̄1)(x2j − x̄2).

The sample correlation is given by

r =
c

s1s2

where s1 and s2 are the sample standard deviations of the samples of
x1’s and x2’s respectively.

The cor() function calculates this quantity.
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Correlation

Example.

Simulated Pairs of Independent
Uniforms:

U1 <- runif(1000, 2, 5)
U2 <- runif(1000, 3, 7)
cor(U1, U2); plot(U2 ˜ U1)

## [1] 0.02404286
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The correlation is small, close to 0, and the scatterplot shows no pattern.
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Correlation

Example.

Orange tree circumference versus age (Orange data frame)

Orange3 <-
subset(Orange, Tree == 3)
# data on Tree No. 3

plot(circumference ˜ age,
data = Orange3)

with(Orange3,
cor(circumference, age))

500 1000 1500

40
80

12
0

age
ci

rc
um

fe
re

nc
e

## [1] 0.9881766

The correlation is large and positive, and the points scatter about a line with positive
slope.
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Marginal Probability Density Functions

When we have more than one measurement, the joint density function
summarizes the overall model. Each individual random variable still has
a probability density function (as discussed earlier), but when in this
larger context, the pdf is referred to as a marginal pdf.

• If X1 and X2 have joint density function f(y1, y2),
* the density function for X1 can be determined as

f1(y1) =
∫ ∞
−∞

f(y1, y2)dy2

That is, the pdf of X1 is obtained by integrating over all possible values of the other variable.

* the density function for X2 can be determined as

f2(y2) =
∫ ∞
−∞

f(y1, y2)dy1

That is, the pdf of X2 is obtained by integrating over all possible values of the other variable.
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Marginal Probability Density Functions

Example.

Find the marginal densities of X and T for the propane example:

fX(x) =
∫ 20

15

x+ t
5 − 13

5
dt = x− 9.5, (x ∈ [10,11])

fT (t) =
∫ 11

10

x+ t
5 − 13

5
dx =

t

25
−

1

2
, (t ∈ [15,20])
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Marginal Probability Density Functions

Example. Find the marginal density of X for the reliability example:

f1(x) =
∫ ∞

0
xe−x(1+y)dy = e−x, x ≥ 0

Find the marginal density function for Y :

f2(y) =
∫ ∞

0
xe−x(1+y)dx =

1

1 + y2
y ≥ 0

by integrating by parts.

Observe that X does not have the same density function as Y , and we
say that X and Y are not identically distributed.

If X and Y had the same marginal distributions, we would say they are
identically distributed.
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Marginal Probability Density Functions

Exercise.

Suppose the joint density function of X1 and X2 is

f(x1, x2) =
λ

x1
e−λx1−x2/x1, x1, x2 ≥ 0

Find the marginal density function for X1 by integrating over all possible
values of x2 (i.e. x2 > 0).

Ans.

fX1
(x1) =

∫ ∞
0

λ

x1
e−λx1−x2/x1dx2 = λe−λx1, x1 ≥ 0

and 0, otherwise. We recognize this as the exponential density function.
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Marginal Probability Density Functions

Exercise 2.

Try to obtain the marginal density function for X2.

Ans.

fX2
(x2) =

∫ ∞
0

λ

x1
e−λx1−x2/x1dx1

which can only be evaluated numerically. Monte Carlo integration,
anyone?
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Marginal Probability Density Functions

To summarize:

When in the context of several random variables, the marginal
probability density function of a single one of the random variables can
be obtained by integrating the joint density function over all possible
values of all of the random variables apart from the one of interest.
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Conditional Density Functions

Suppose we know the value of X1, and we would like to predict the value
of X2, using this information.

The joint probability density function tells us how X1 and X2 are related,
so we might think that f(x1, x2) is the probability density function of X2

for each given value of X1, but this would be an incorrect interpretation.

This is because ∫ ∞
−∞

f(x1, x2)dx2 = fX1
(x1)

If f(x1, x2) were a probability density function for X2, given X1, the
above integral should evaluate to 1.
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Conditional Density Functions

However, if we divide f(x1, x2) by fX1
(x1), we obtain a function of x2

which integrates to 1:∫ ∞
−∞

f(x1, x2)

fX1
(x1)

dx2 =
fX1

(x1)

fX1
(x1)

= 1.

It turns out that this gives a very useful predictive density function for
X2, given knowledge of X1.

We write

fX2|X1
(x1, x2) =

f(x1, x2)

fX1
(x1)

as the conditional density function of X2 given X1. This density function
predicts the probability density of X2, when we know the value of X1.
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Conditional Density Functions

Similar reasoning tells us that the predictive probability density of X1 or
its conditional density function is given by

fX1|X2
(x1, x2) =

f(x1, x2)

fX2
(x2)

This completely summarizes how knowledge of X2 can help us make
predictions about X1.
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Conditional Density Functions

Example. Suppose X1 and X2 have the joint pdf

f(x1, x2) =
λ

x1
e−λx1−x2/x1, x1, x2 ≥ 0

and we know the value of X1 as x1, say 10, or 3, etc. Earlier, we found
that

fX1
(x1) = λe−λx1, x1 ≥ 0.

Then the conditional density for X2, given X1

fX2|X1
(x1, x2) =

1

x1
e−x2/x1, x2 ≥ 0.

This is an exponential density function, but now the rate is 1/x1. e.g. If
we know that x1 = 10, then the expected value of X2 would be 10, and if
x1 = 3, the expected value of X2 is 3.

The conditional density function of X2, given X1, is not the same as the
marginal density of X2. Thus, X1 gives predictive information about X2.
The two random variables are not independent.
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Independent Random Variables

We have spoken earlier of cases where X1 and X2 are independent. In
such cases, X1 provided no predictive information about X2;
technically, this means that the conditional density function of X2 given
X1 is identical to the marginal density function of X2:

fX2|X1
(x1, x2) = fX2

(x2).

Multiplying both sides of this by fX1
(x1) gives the joint density function

on the left and the product of the marginal density function on the right.
Random variables are independent if their joint distribution can be
factored in this way. That is, X1 and X2 are independent, if their joint
density is

f(x1, x2) = fX1
(x1)fX2

(x2) (1)

where the two functions are the respective marginal densities of X1 and
X2.
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Independent Random Variables

Example.

Consider the propane example.

f(x, t) =
x+ t

5 − 13

5

fX(x)fT (t) = (x− 9.5)
(
t

25
−

1

2

)
⇒

f(x, t) 6= fX(x)fT (t)

so X and T are not independent.

Exercise. For the reliability problem, show that X and Y are not
independent.
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Independent Random Variables

Example. An electronic surveillance system has one of each of two types
of components in joint operation. The joint density function of the
lifelengths X1 and X2 of the two components is

f(y1, y2) = (1/8)y1e
−1

2(y1+y2)

for y1 > 0 and y2 > 0, and it is 0, otherwise.

Are X1 and X2 independent?

f1(y1) =
∫ ∞

0

1

8
y1e
−1

2(y1+y2)dy2 =
1

4
y1e
−1

2y1, y1 > 0

and

f2(y2) =
1

2
e−

1
2y2, y2 > 0

⇒

f(y1, y2) = f1(y1)f2(y2)

so X1 and X2 are independent.
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Independent Random Variables

Example.

* The time X1 until failure of a fuel pump in an internal combustion
engine can be modelled as a normal random variable with expected
value 2000 hours and standard deviation 400 hours.

* The lifetime X2 of a timing belt can be modelled as an exponential
random variable with expected value 2800 hours.

* Supposing that these parts operate independently, find the probability
that both fail before 1000 hours of operation.

P (X1 < 1000, X2 < 1000) = P (X1 < 1000)P (X2 < 1000)

= P (Z < −2.5)(1− e−.357) = .0062(.300) = .0019

Here Z = X1−2000
400

is a standard normal random variable. The pnorm function can be used to determine
that P (Z < −2.5) = .0062.
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Graphical Views of Independence and Dependence

We can get an intuitive feel for the independence modelling assumption
(1) by graphing some simulated random variables, both independent and
for some forms of dependence.

First, let’s consider two independent uniform random variables which
take values in the interval [0,1].

The next figure displays a scatterplot of 500 values taken from the
distributions of U2 and U1, where are both uniformly distributed.
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Graphical Views of Independence and Dependence

U1 <- runif(500)

U2 <- runif(500)

plot(U2 ˜ U1)
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0
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2
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8
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0

U1

U
2

There is no structure to the patterns that might be discerned from this picture. This is
the clearest possible illustration of variables which have no relation.
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Graphical Views of Independence and Dependence

Independence manifests itself in other ways.

Next, we consider exponential random variables, Z1 and Z2. In both
cases, we will sample 10000 points from their respective distributions
and look at a scatterplot of the corresponding pairs of data points.

Z1 <- rexp(10000)
Z2 <- rexp(10000)
plot(Z2 ˜ Z1)
lines(lowess(Z1, Z2),

col=4, lwd=2)

0 2 4 6 8

0
2

4
6

8

Z1

Z
2

What you should observe in the figure is
that it is not possible to predict the value
of Z2 from knowledge of Z1.

This is a random collection of points, even
though it might appear that there is a pat-
tern (points are bunched up towards the
lower left corner of the plot).

What characterizes independence is that
neither variable gives predictive informa-
tion about the other variable.
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Graphical Views of Independence and Dependence

A Case of Dependence

Let’s change the story a bit now.

Suppose X1 and X2 are related. In particular, suppose X1 is
exponentially distributed with rate λ = 1.5 and X2 is exponential with
rate 1/X1.

Next, we will apply our simulation-based graphical analysis.
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Graphical Views of Independence and Dependence

X1 <- rexp(10000, rate = 1.5)

X2 <- rexp(10000, rate = 1/X1)

plot(X2 ˜ X1)

lines(lowess(X1, X2), col=4, lwd=2)
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Correlation versus Dependence

What is the difference between correlation and dependence?

Correlation ... is a measure of linear dependence.

2 random variables may be dependent, but not correlated.
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Correlation versus Dependence

Example.

U1 <- runif(5000); U2 <- runif(5000)

V1 <- U1 + U2; V2 <- U1 - U2

cor(V1, V2); plot(V2 ˜ V1)

## [1] -0.007104551
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Are V1 and V2 dependent?
Are V1 and V2 correlated?
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Example 2

U1 <- rexp(50000); U2 <- rexp(50000)

V1 <- U1 - U2; V2 <- V1ˆ2

cor(V1, V2); plot(V2 ˜ V1)

## [1] 0.003538419
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Are V1 and V2 dependent?

Are V1 and V2 correlated?
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Variances of Sums of Independent R.V.s

Suppose X1 and X2 are independent random variables. Then

E[X1X2] =
∫ ∫

y1y2f1(y1)f2(y2)dy1dy2 = E[X1]E[X2]

and

E[(X1 +X2)2] = E[X2
1] + 2E[X1X2] + E[X2

2]

so

Var(X1 +X2) = E[(X1 +X2)2]− (E[X1 +X2])2

= E[X2
1] + E[X2

2]− (E[X1])2 − (E[X2])2

= Var(X1) + Var(X2)
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Variances of Sums of Independent Random Variables

For n independent random variables X1, X2, . . . , Xn,

Var(X1 +X2 + · · ·+Xn) = Var(X1) + · · ·Var(Xn)

Suppose X1, X2, . . . , Xn is a sample of independent measurements. If
the variance of each is σ2, then

Var(X1 +X2 + · · ·+Xn) = nσ2

and

Var(X̄) = σ2/n

where

X̄ =
1

n

n∑
k=1

Xk
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Variances of Sums of Independent R.V.s

Example. Find the variance of the average of the 6 vibration
measurements.

σ2 = E[X2
1]− E[X1]2

E[X2
1] =

1

10

∫ ∞
5

y2e−(y−5)/10dy = 325

⇒ σ2 = 100

⇒ Var(X̄) = 100/6 = 16.7
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The Distribution of the Sample Average

• Suppose X1, X2, . . . , Xn are independent measurements coming from
a normal population with mean µ and variance σ2. (i.e. a normal
random sample)
• What is the sampling distribution of X̄?

The density function for X̄ is normal with expected value µ and
variance σ2/n.
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Example.

Drying times for a certain paint under certain temperature and humidity
conditions can be modelled as a normally distributed random variable
with expected value 75 minutes and variance 81 minutes2.

* An additive might speed up drying.
* 4 drying times were recorded using the additive.
* If the additive has no effect, find the probability that the average of
these drying times would be less than 70 minutes.
Ans. X̄ is normally distributed with mean 75 and variance 81/4, i.e.
σ = 4.5.

pnorm(70, 75, 4.5)

## [1] 0.1332603
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Central Limit Theorem

• Suppose X1, X2, . . . , Xn are independent measurements coming from
a population with mean µ and variance σ2. (i.e. the population does not
have to be normal)
• What is the sampling distribution of X̄?

The density function of Z is approximately standard normal, for large
n.
The density function for X̄ is approximately normal with expected
value µ and variance σ2/n.
• In practice, the magnitude of n needed for a reasonable approximation

will depend on how skewed or heavy-tailed the underlying distribution
is. For a uniform distribution, a sample of size 5 might be large
enough, and for an exponential distribution, a sample of size 30 might
be needed.
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Central Limit Theorem

Example. The breaking strength of a rivet has an expected value of
10000 psi and a variance of 250000 psi. The breaking strengths of 40
rivets are measured. Find the probability that the average of the
measurements is between 9900 and 10200.

P (9900 < X̄ < 10200)
.

=

P (−1.26 < Z < 2.53) = .890

Find the probability that 1 of the rivets has a breaking strength between
9900 and 10200?

We don’t know the distribution of the measurements.
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Central Limit Theorem

Example. The lifetime of a type of battery is approximately normally
distributed with expected value 10 hours and standard deviation 3
hours. A package contains 4 batteries. When camping, I plan to use a
flashlight that operates on 1 battery at a time for 35 hours.

Find the probability of running out of power early.

P (X̄ < 35/4) = P (Z < −.833)
.

= .203

A more expensive battery has the same expected value, but a variance
of 2.25 hours2. Find the probability of running out of power early with
this brand.

P (X̄ < 35/4) = P (Z < −1.6)
.

= .0548
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Central Limit Theorem

Example. The ACME elevator company uses cables which will break
when carrying more than 1000 pounds. 7 men board an elevator. If adult
male weight is normally distributed with expected value 150 pounds and
standard deviation 15 pounds, find the probability that the elevator cable
will break.

P (X̄ > 1000/7) = P (Z > −1.26) = .896
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The Distribution of a Linear Combination

• Suppose X1 and X2 are independent normally distributed
measurements.
• Set Y = a1X1 + a2X2

• ⇒ Y is normally distributed with
* E[Y ] = a1E[X1] + a2E[X2]

* Var(Y ) = a2
1Var(X1) + a2

2Var(X2)
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The Distribution of a Linear Combination

Shaft in Sleeve Example.

* Let X denote the cross-sectional diameter of a steel rod
* Let Y denote the cross-sectional diameter of a hollow cylinder.
* Suppose X is normally distributed with expected value 15 mm and
variance 3 mm

* Suppose Y is normally distributed with expected value 16 mm and
variance 2 mm.

* What is the probability that a randomly selected steel rod will fit into
the cylinder?

P (Y −X > 0) =?
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The Distribution of a Linear Combination

Example (cont’d). Y −X has a normal distribution with expected value

E[Y −X] = E[Y ]− E[X] = 16− 15 = 1

and variance

Var(Y −X) = Var(Y ) + Var(X) = 5

a1 = 1 and a2 = −1.

P (Y −X > 0) = P (Z > −.45) = .674
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The Distribution of a Linear Combination of n Random Variables

If Y = a1X1 + · · ·+ amXm, then

* E[Y ] =
∑m
i=1 aiE[Xi] and

* Var(Y ) =
∑m
i=1 a

2
i Var(Xi)

If the X’s are independent normal random variables, then Y will be
normally distributed.
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The Distribution of a Linear Combination

Example. When manufacturing a certain component, 3 different
machining operations are required.

* Each machining time is normally distributed and is independent of the
other times.

* The expected machining times are 15, 30 and 20 minutes, resp.
* The standard deviations are 1, 2, and 1.5, resp.
* The cost of using machine 1 is 2 dollars per minute.
* Machine 2 costs 3 dollars per minute.
* Machine 3 costs 4 dollars per minute.
* Find the probability that the machining cost of producing one
component is more than 220 dollars.

P (2X1 + 3X2 + 4X3 > 220) = P (Z > 2.29) = 0.011
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Simple Regression

Suppose X and Y are random variables which have a joint density
function given by

f(x, y) =
e−(y−β0−β1x)2/(2σ2)−x2/2

2πσ
.

This is an example of a bivariate normal pdf: X is normal with mean 0,
and Y is normal with mean β0 + β1x. In other words, the mean of Y is
now a linear function of x.

β0 and β1 are unknown intercept and slope parameters.

If we want to predict Y from X, we should use the conditional density
function fY |X(x, y). We can obtain that density function in 2 steps:

1. Find fX(x) by integrating over all y.
2. Divide f(x, y)/fX(x).
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Simple Regression

1.

fX(x) =
∫
f(x, y)dy =

e−x
2/2

√
2π

.

We have used the fact that

e−(y−β0−β1x)2/(2σ2)
√

2πσ

is a normal pdf and integrates to 1.
2. Dividing f(x, y) by fX(x) gives

fY |X(x, y) =
e−(y−β0−β1x)2/(2σ2)

√
2πσ

.
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Simple Regression

The conditional distribution that we just obtained is a normal pdf with
mean

β0 + β1x

and variance σ2.

The mean is an expected value (called the conditional expectation) and
has the notation

E[Y |X = x] = β0 + β1x. (2)

The conditional expectation of Y , given X = x is also referred to as the
regression function, a function of x.

The variance is actually a conditional variance:

Var(Y |X = x) = σ2. (3)

This is often referred to as the noise variance.
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Simple Regression

The regression function at (2) and the variance function at (3), which is
just the constant function, tell us that, given X = x, we could view Y as
the random variable

Y = β0 + β1x+ ε

where ε is the noise random variable - a normal random variable with
mean 0 and variance σ2. The β0 + β1x terms are not random.

This is the usual form of the simple linear regression model which
relates Y to x in the presence of noise.

We will return to this model in a later lecture.
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