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Maximum Likelihood Estimation (MLE)

• a motivating example

• maximizing the likelihood when there are a small number of possible
parameter values

• maximizing the likelihood when there is a continuous infinity of
possible parameter values, using calculus

• Generalized Linear Models

– Linear Models and the need for more flexibility

– Poisson regression

– Binary logistic regression
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Motivating Example

Suppose the proportion of impurity X in an iron ore specimen is
modelled with the pdf

fX(x) = (α+ 1)xα, 0 ≤ x ≤ 1.

α is an unknown parameter.
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Some Possible Models for Proportion Impurity

Because α is unknown, it is impossible to know which probability density function is
the correct one.
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Motivating Example

By taking measurements of the impurity in a sample of one or more
specimens, we can estimate α using maximum likelihood estimation to
determine which is the best model for the impurity measurements.

The density function is highest at values of x that are most probable.
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Taking one measurement

Suppose an impurity measurement is taken: x = .1348.
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Unless we have taken an unusual measurement, the probability density
function at our measurement should be high.

Which of the above curves appears to be the most likely?
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Maximizing the Likelihood

If the parameter space consists only of the values {−.62, .25,2.0}, then
we would choose α̂ = −.62, since it seems to be the most likely value.

This is the maximum likelihood estimate.

The maximum likelihood estimate is the value of the parameter which
gives maximum probability density at the given data.

It is important to keep the possible set of parameter values in mind. Here
there were 3 possibilities only.

In many cases there are an infinite number of possibilities.
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Maximizing the Likelihood

Suppose the parameter space is the set where α > −1.

The likelihood principle tells us to choose the value that gives highest
density at the data point.

In other words, we need to see where

fX(.1348) = (α+ 1).1348α

is large. This is a function of α:

L(α) = (α+ 1).1348α

L(α) is called the likelihood function.

Our goal is to find the value of α for which this function is maximized.
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Choosing the Most Likely Density Function

When there is only one parameter, it is easy to plot the graph of the
likelihood function.

It is always a good idea to plot the likelihood function.
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The function above measures the likelihood of our observed measurement as a
function of α:

We can estimate α by maximizing this likelihood. The maximum value occurs near
α = −.5.
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Choosing the Most Likely Density Function

Maximizing the log likelihood gives the equivalent result, but is often
computationally more convenient:
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The maximum value occurs near α = −.5 in both cases.
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Choosing the Most Likely Density Function

The exact value that maximizes the likelihood can sometimes be
determined using calculus:

1. Differentiate L(α) (or `(α) = logL(α)) with respect to α

2. Solve for α in L′(α) = 0.

Example:

`(α) = log(f(x)) = log(α+ 1) +α log(x) = log(α+ 1) +α log(.1348)

Differentiate with respect to α:

`′(α) =
1

α+ 1
+ log(.1348)

Solve `′(α) = 0 for α:

α̂ = −1−
1

log(.1348)
= −0.501.
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Estimating α with 2 Measurements

We should hope to get a better estimate of α if we have more than one
measurement.

The joint density function for 2 independent impurity measurements, x1

and x2, is

f(x1, x2) = fX(x1)fX(x2)

= (α+ 1)2(x1x2)α = L(α)

The log likelihood function is

`(α) = logL(α) = 2 log(α+ 1) + α log(x1x2).

Maximizing either of these functions with respect to α gives us the
maximum likelihood estimate of α.
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Estimating α with 2 Measurements

A second independent impurity measurement is .0381.
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The maximum value occurs near α = −.6 in both cases.
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Estimating α with 2 Measurements

Evaluating the likelihood at the 2 measurements, we have

L(α) = (α+ 1)2(.00514)α

and the log likelihood, `(α) is

`(α) = logL(α) = 2 log(α+ 1) + α log(.00514)

By differentiating with respect to α, we can find the value of α that
maximizes this. That is, solve

`′(α) =
2

α+ 1
+ log(.00514) = 0.

The maximizer is α̂ = −.62.
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Estimating α with 2 Measurements

We can write

f̂X(x) = .38x−.62

as our estimate of the impurity pdf.

We can also plot it, together with the data, to see that it makes sense:
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Estimating α with a Larger Sample

A better estimate can be obtained with a larger sample of impurity
measurements.

Here is a sample of 10 independent measurements:

## [1] 0.1348 0.0420 0.0003 0.0049 0.0002

## [6] 0.0381 0.0018 0.0264 0.0366 0.0007

Because of independence, the joint density evaluated at the
measurements is

f(x1, x2, . . . , x10) = (α+ 1)10(x1x2 . . . x10)α

Again, this is a function of the unknown parameter α. We can take the
logarithm of this likelihood function:

`(α) = logL(α) = 10 log(α+ 1) + α
10∑
j=1

log(xj)
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Estimating α with 10 Measurements

The log likelihood function evaluates to

`(α) = 10 log(α+ 1) + α(−50.9155).

We maximize this by solving

`′(α) =
10

α+ 1
− 50.9155 = 0.

α̂ = −0.8036.
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Estimating α with 10 Measurements

The likelihood and log likelihood functions can be plotted:
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The maximum value occurs at α = −0.8036 in both cases.

Note that the spread in the likelihood function is less than before the maximizer is
more precise due to the increase in sample size.
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Estimating α with 10 Measurements

The estimated pdf is now

f̂X(x) = 0.1964x−0.8036.

Again, we plot the estimated pdf, together with the data, to see that it
makes sense:
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Maximum Likelihood Estimation - Summary

The likelihood function for n independent measurements y1, . . . , yn

coming from a population modelled by a density f(y) is

L(θ) = f(y1)f(y2) · · · f(yn)

θ denotes parameter(s) to be estimated.

The maximum likelihood estimator for θ is the value which maximizes
the likelihood function.

Often, the maximum likelihood estimator can be found by setting the
derivative of the log likelihood to 0 and solving for θ.
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Another Example

The time between successive oil rig accidents can be modelled with the
probability density function

f(y) = λe−λy.

Suppose oil rig accident times have occurred at t1, t2, . . . , tn+1.

Let yi = ti+1 − ti for i = 1,2, . . . , n. Then y1, y2, . . . , yn are the times
between successive oil rig accidents.

The likelihood function is then

L(λ) = λe−λy1 · · ·λe−λyn

= λne−λ
∑n
i=1 yi

e.g. if n = 3, and y1 = 8, y2 = 2 and y3 = 6, then

L(λ) = λ3e−16λ
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Oil Rig Accident Times - Example

The most believable value of λ maximizes L(λ) or log(L(λ)).

Differentiate log(L(λ)) with respect to λ:

d

dλ
log(L(λ)) =

d

dλ

−λ n∑
i=1

yi + n log(λ)

 = −
n∑
i=1

yi + n/λ

Setting this equal to 0 gives the maximum:

λ̂ = n/
n∑
i=1

yi = 1/ȳ

For the given data,

λ̂ = 3/16
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Example: Estimating more than One Parameter

An important property of air bags is permeability of the woven fabric.

This is related to their ability to absorb energy.

A possible model for permeability measurements is the normal
distribution:

f(x) =
e−(x−µ)2/(2σ2)
√

2πσ2

where µ denotes the expected or mean permeability measurement, and
σ2 denotes the variance of such measurements.
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Example: Estimating more than One Parameter

Given n independent measurements x1, . . . , xn, the log likelihood
function is

logL = −
∑n
i=1(xi − µ)2

2σ2
−
n

2
log(2πσ2)

To estimate µ and σ2, we will maximize this log likelihood with respect to
µ and σ2.

Differentiating with respect to µ and setting to 0 gives

µ̂ =
1

n

n∑
i=1

xi = x̄

Also, differentiating with respect to σ2 and setting to 0 gives

σ̂2 =

∑n
i=1(Xi − X̄)2

n
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Example: Estimating more than One Parameter

4 independent measurements of permeability were taken at 20◦:
40, 60, 50, 45

Substituting into the expressions above, we obtain

µ̂ = x̄ = 48.8

and

σ̂2 = 54.7.
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Example: Estimating more than One Parameter

It is important to know whether permeability is different for different
temperatures.

To determine whether temperature has an effect, we consider
measurements of air bag permeability at 2 different temperatures: 0◦C
and 20◦C:

0: 70, 85, 92, 80, 60

20: 40, 60, 50, 45

25



Air Bag Example

Let us model permeability at each temperature with normal distributions.

Denote the expected value of permeability at 0◦ by µ0 and at 20◦ by µ20.

Let the variance be σ2 in both cases.

We are assuming that variability is the same at different temperatures.
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Air Bag Example

How do we estimate µ0, µ20 and σ2?

Let x1, x2, . . . , xm denote the 1st sample, and let y1, y2, . . . , yn denote the
2nd sample.

m = 5 and n = 4.

The density function for one of the X measurements is

f(x) =
e−(x−µ0)2/(2σ2)
√

2πσ2

The density function for one of the Y measurements is

f(y) =
e−(y−µ20)2/(2σ2)

√
2πσ2
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Air Bag Example

The log likelihood function is

logL = −
∑m
i=1(xi − µ0)2

2σ2
−
∑n
j=1(yj − µ20)2

2σ2
−
m+ n

2
log(2πσ2)
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Air Bag Example

Differentiating with respect to µ0 and setting to 0 gives

µ̂0 =
1

m

m∑
i=1

Xi = X̄

Similarly, differentiating with respect to µ20 gives

µ̂20 =
1

n

n∑
j=1

Yj = Ȳ

Also, differentiating with respect to σ2 gives

σ̂2 =

∑m
i=1(Xi − X̄)2 +

∑n
j=1(Yj − Ȳ )2

n+m

x̄ = 77.4, ȳ = 48.8, σ̂2 = 94.9

Estimate of µ0 − µ20: x̄− ȳ = 28.6 Is this difference real?
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Air Bag Example - Standard Error of the Difference

One way to check if the observed difference is not just due to chance is
to calculate the standard error of the difference (SED):

SED =
√

Var(x̄− ȳ).

Because the two samples are independent, the variance of the sum is
the sum of the variances:

Var(x̄− ȳ) = Var(x̄) + Var(ȳ) = σ2/m+ σ2/n.

Therefore, we can estimate the SED by plugging in the estimated value
of σ:

SED =
√

18.98 + 23.725 = 6.5349.

This standard error is small relative to the observed difference (28.6), so the observed
difference is not likely due to chance alone.
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Linear Models and the Need for a More General Approach

A linear model is a predictive model where the expected value of the
response or outcome variable can be expressed as a linear combination
of predictor variables.

Noise or error is modelled by adding it to the expected value.

Normally, if the noise is modelled at all, it is modelled as a normal
random variable with mean 0.

Usually, linear models can be fit using least-squares methods, where a
linear system of equations must be solved in order to find the parameter
estimates.

Examples: simple and multiple linear regression; autoregressive time
series models

For count data and many other kinds of data, normality is not realistic.
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How Generalized Linear Models Differ from Linear Models

A generalized linear model is a predictive model where the expected
value of the response variable is a function of a linear combination of
predictor variables.

Noise or error is modelled with specific distributions.

Count data is better modelled with binomial, Poisson, or negative
binomial, and so on.

If continuous measurements are always positive, such as time until
failure, other models, such as Weibull or lognormal are appropriate.

Generalized linear models are usually fit using maximum likelihood
estimation or a related method.
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Poisson Regression

The cigbutts data set (in the MPV package) gives counts of cigarette
butts at locations along a sidewalk as a function of distance from a
smoking gazebo.

We can use Poisson regression to model this count data as a function of
distance.
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Poisson Distribution

Recall:

the Poisson distribution with mean λ is given by

P (X = x) =
e−λλx

x!
.

A common approach to fitting the Poisson distribution regression is to
include a predictor x through a log-linear relationship:

log(λ) = β0 + β1x. (1)

The log function used in this way is referred to as the link function since
it links the distribution parameter λ with the predictor x.

This link function is preferred here because it recognizes that λ must be
positive, while the right hand side of the above equation can take any
real value.
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Likelihood for the cigarette butts data

If Xi is the number of butts observed at the ith location, its expected
value would be λi and the corresponding distance might be denoted as
di.

The model for the ith observation is really

P (Xi = xi) =
e−λiλxii
xi!

.

The likelihood function is the product of such probabilities

The log likelihood is then the sum of the logs of the probabilities:

logL = −
n∑
i=1

λi +
n∑
i=1

xi logλi −
n∑
i=1

logxi!.
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Visualizing the Cigarette Butt Counts
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Scatterplot of log of cigarette butt counts versus log of distance.
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Predicting Counts Using Distance

We suspect a linear relation between the log of λi and di:

log(λi) = β0 + β1di

Let’s suppose we know that β0 = 3.55. Then we could say that

log(λi) = 3.55 + β1di

Plugging this into the log likelihood expression gives

logL = −
n∑
i=1

e3.55+β1di +
n∑
i=1

xi(3.55 + β1di)−
n∑
i=1

logxi!.

The xi’s are the observed counts and the di’s are the distances, so we
can plot this as a function of β.
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Predicting Counts Using Distance

Log likelihood function:
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Log likelihood curve for the cigarette butts example. The maximizer is near -.0017.

A predictive model for log of the expected number of cigarette butts would be

̂log(λ) = 3.55− .0017d

where d is distance from the gazebo.
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Using Built-In Software

The glm() function conducts maximum likelihood estimation for
Poisson regressions and logistic regressions fairly straightforwardly.

cig.glm <- glm(x ˜ d, family = poisson)

coef(cig.glm)

## (Intercept) d

## 3.553514 -0.001696
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Using Built-In Software

Additional output:
summary(cig.glm)$coefficients

## Estimate Std. Error
## (Intercept) 3.553514 0.1735102
## d -0.001696 0.0002009
## z value Pr(>|z|)
## (Intercept) 20.480 3.237e-93
## d -8.442 3.127e-17

Note, in particular, the standard errors of the parameter estimates.

40



Simulating from the Fitted Model

Recall that we simulate n Poisson random numbers using
rpois(n, lambda).

If we have a vector of n predictor values in x, and a fitted model of the
form

log(λ) = β0 + β1x

we can simulated n corresponding Poisson responses, using

λ = eβ0+β1x.

To simulate the numbers of cigarette butts as a function of distance, use

lambda <- exp(3.55 - 0.00166*d)

n <- nrow(cigbutts) # No. of observations in the data set

simcounts <- rpois(n, lambda = lambda)

simcigbutts <- data.frame(count = simcounts, distance = d)
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Simulating from the Fitted Model
plot(count ˜ distance, data = simcigbutts,

ylim = range(simcigbutts$count, cigbutts$count))
points(count ˜ distance, data = cigbutts, col="grey", pch=16)
legend("topright", legend = c("simulated", "actual"), pch=c(1, 16),

col=c("black", "grey"))
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Why might this kind of simulation exercise be useful?
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Modelling Binary Responses

The data in p13.1 in the MPV package describes successes and failures
of surface-to-air missiles as they relate to target speed.

library(MPV)

plot(p13.1, xlab = "speed", ylab = "success/fail", pch=16)
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Surface-to-air missile successes (1) and failures (0) as they relate to target speed (in
knots).
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Modelling Binary Responses

The first observation to make is that fitting a straight line to such data
makes no sense, since the plotted points do not at all scatter about such
a line.

Furthermore, if such a line were to be fit to the data, it would necessarily
take values outside the interval [0,1] on subsets of the domain;
interpretation of such values would be difficult.

In fact, the preferred interpretation of output arising from the fitting of
models to such data is that of probability.

That is, useful models can provide answers to questions such as, “What
is the probability of success at a given target speed?”

Since probabilities must lie within the interval [0,1], we must consider
models based on nonlinear functions.
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Modelling Binary Responses

There are many functions which have values in [0,1].

For the current example, we might reasonably believe that the
probability of success decreases as target speed increases.

Perhaps the most popular function for this purpose is the logistic
function

p(x) =
ex

ex + 1
.
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Modelling Binary Responses

curve(exp(x)/(1 + exp(x)), from = -3, to = 3, ylab="p(x)")
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The logistic function.
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Modelling Binary Responses

A bit of algebra allows us to express x in terms of p, yielding the logit
function:

logit(p) = log

(
p

1− p

)
.

While p is restricted to take values between 0 and 1, the logit function
can take any possible value, so relating the logit function to a straight
line or other linear combination is a possibility. For example,

logit(p(x)) = β0 + β1x

which means that we can express the probability of an event in terms of
a covariate x, using a linear function, but the probability is related to the
linear function through the logit.

The logit is an example of a link function, since it links the expected
response, in this case the probability p(x) to the linear function of the
covariate(s).
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Modelling Binary Responses

To fit the logistic regression model to the missile success data, try

p13.glm <- glm(y ˜ x, data = p13.1, family = binomial)

Note that we did not specify the link function; the default choice with the
binomial family is the logit.

coef(p13.glm)

## (Intercept) x

## 6.0709 -0.0177

The Coefficient part of the output tells us that the logit of the probability
of success as a linear function of target speed has intercept 6.07 and
slope -.0177.
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Modelling Binary Responses

More output:

summary(p13.glm)$coefficients

## Estimate Std. Error z value

## (Intercept) 6.0709 2.108996 2.879

## x -0.0177 0.006076 -2.914

## Pr(>|z|)

## (Intercept) 0.003995

## x 0.003567

Standard error estimates for these parameter estimates are supplied and
indicate, in particular, that the slope is clearly negative.
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Modelling Binary Responses - Visualizing the Model

plot(p13.1, xlab = "speed", ylab = "success/fail", pch=16)

newspeeds <- 200:500 # predict at these target speeds

lines(newspeeds, predict(p13.glm,

newdata=data.frame(x = newspeeds), type = "response"))
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Surface-to-air missile successes (1) and failures (0) as they relate to target speed (in
knots) with overlaid logistic curve.
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Simulating from the Fitted Model

Recall that we simulate n Bernoulli random numbers using
rbinom(n, 1, p).

If we have a vector of n predictor values in x, and a fitted model of the
form

logit(p) = β0 + β1x

we can simulated n corresponding Bernoulli responses, using

p =
eβ0+β1x

1 + eβ0+β1x
.

To simulate the numbers of missile successes as a function of speed,
use

p <- exp(6.0709-0.0177*p13.1$x)/(1+exp(6.0709-0.0177*p13.1$x))

n <- nrow(p13.1) # No. of observations in the data set

simy <- rbinom(n, 1, prob = p)

simp13.1 <- data.frame(y = simy, x = p13.1$x)
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Simulating from the Fitted Model
plot(y ˜ x, data = simp13.1)
points(y ˜ x, data = p13.1, col="grey", pch=16)
legend(450, .5, legend = c("simulated", "actual"), pch=c(1, 16),

col=c("black", "grey"))
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