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a motivating example

maximizing the likelihood when there are a small number of possible
parameter values

maximizing the likelihood when there is a continuous infinity of
possible parameter values, using calculus

Generalized Linear Models
— Linear Models and the need for more flexibility
— Poisson regression

— Binary logistic regression




Suppose the proportion of impurity X in an iron ore specimen is
modelled with the pdf

fx(@) =(a+1)z% 0<z<1

« Is an unknown parameter.
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Because o is unknown, it is impossible to know which probability density function is
the correct one.




By taking measurements of the impurity in a sample of one or more
specimens, we can estimate o« using maximum likelihood estimation to
determine which is the best model for the impurity measurements.

The density function is highest at values of x that are most probable.




Suppose an impurity measurement is taken: + = .1348.
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Unless we have taken an unusual measurement, the probability density
function at our measurement should be high.

Which of the above curves appears to be the most likely?




If the parameter space consists only of the values {—.62,.25,2.0}, then
we would choose a = —.62, since it seems to be the most likely value.

This is the maximum likelihood estimate.

The maximum likelihood estimate is the value of the parameter which
gives maximum probability density at the given data.

It is important to keep the possible set of parameter values in mind. Here
there were 3 possibilities only.

In many cases there are an infinite number of possibilities.




Suppose the parameter space is the set where o« > —1.

The likelihood principle tells us to choose the value that gives highest
density at the data point.

In other words, we need to see where

fx(.1348) = (o +1).1348%

Is large. This is a function of a:

L(a) =(a+1).1348“

L(«) is called the likelihood function.

Our goal is to find the value of « for which this function is maximized.




When there is only one parameter, it is easy to plot the graph of the
likelihood function.

It is always a good idea to plot the likelihood function.
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The function above measures the likelihood of our observed measurement as a
function of «a:

We can estimate « by maximizing this likelihood. The maximum value occurs near
o = —.b.




Maximizing the log likelihood gives the equivalent result, but is often
computationally more convenient:
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The maximum value occurs near « = —.5 in both cases.




The exact value that maximizes the likelihood can sometimes be
determined using calculus:

1. Differentiate L(«) (or /(«) = log L(«)) with respect to o
2. Solve for ain L'(a)) = 0.

Example:

(o) =10g9(f(z)) =log(a+1)+alog(z) =log(a+ 1)+ alog(.1348)
Differentiate with respect to a:

1
/ —
V(o) = p—— + 10g(.1348)

Solve ¢ (a) = O for a:

1
a=—-1-— — —0.501.
l0g(.1348)
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We should hope to get a better estimate of « if we have more than one
measurement.

The joint density function for 2 independent impurity measurements, =
and zo, is

f(z1,20) = fx(z1)fx(x2)

= (a4 1)*(z122)* = L(a)

The log likelihood function is

(o) =109 L(a) =2l0g(ax+ 1) + alog(xz1x2).

Maximizing either of these functions with respect to o gives us the
maximum likelihood estimate of «.

11



A second independent impurity measurement is .0381.
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The maximum value occurs near o — —.6 in both cases.
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Evaluating the likelihood at the 2 measurements, we have
L(a) = (a + 1)%(.00514)°
and the log likelihood, /(«) is

(o) =l0ogL(a) =2l0og(ax+ 1) + alog(.00514)

By differentiating with respect to «, we can find the value of o that
maximizes this. That is, solve

2
/ — —
V() = — + 10g(.00514) = 0.

The maximizer is a = —.62.
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We can write
fx(z) = .382752

as our estimate of the impurity pdf.

We can also plot it, together with the data, to see that it makes sense:
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Estimating o« with a Larger Sample

## [1] 0.1348 0.0420 0.0003 0.0049 0.0002

## [6] 0.0381 0.0018 0.0264 0.0366 0.0007



The log likelihood function evaluates to

/(o) =10l0og(aa+ 1) + a(—50.9155).
We maximize this by solving

10
+1

a = —0.8036.

!(a) = — 50.9155 = 0.

Q
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The likelihood and log likelihood functions can be plotted:
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The maximum value occurs at « = —0.8036 in both cases.

Note that the spread in the likelihood function is less than before ~~ the maximizer is
more precise due to the increase in sample size.
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The estimated pdf is now

fx(:n) — 0.1964 0-8036

Again, we plot the estimated pdf, together with the data, to see that it
makes sense:
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The likelihood function for » independent measurements y1,...,yn
coming from a population modelled by a density f(vy) is

L(0) = f(y1)f(y2) -~ f(yn)

0 denotes parameter(s) to be estimated.

The maximum likelihood estimator for ¢ is the value which maximizes
the likelihood function.

Often, the maximum likelihood estimator can be found by setting the
derivative of the log likelihood to 0 and solving for 6.
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The time between successive 0il rig accidents can be modelled with the
probability density function

F(y) = re™,

Suppose oil rig accident times have occurred at 1,75, ...,%,,41.

Lety, =¢,41 —t;fori=1,2,... ,n. Then y1,y>,...,yn are the times
between successive oil rig accidents.
The likelihood function is then
L(X\) = Xe ML... e n
— A\~ ADli=1Y
e.g. ifn =3,and y; = 8,y = 2 and y3 = 6, then
L(X) = X3e10A
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The most believable value of A maximizes L()\) or log(L(\)).

Differentiate log(L()\)) with respect to \:

d d L -
a|Og(L()\)) — — (-)\i; Y; +nlog(>\)) — _i; y; +n/A

Setting this equal to 0 gives the maximum:

For the given data,
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An important property of air bags is permeability of the woven fabric.
This is related to their ability to absorb energy.

A possible model for permeability measurements is the normal
distribution:
o—(@—1)?/(202)
) =05
where 1. denotes the expected or mean permeability measurement, and
o2 denotes the variance of such measurements.
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Given n independent measurements =1, ..., z,, the log likelihood
function is

_Z?’:l(mz‘ = ,U)Q

log L =
g D02

— g log(2702)

To estimate 1 and o2, we will maximize this log likelihood with respect to
©and o2.

Differentiating with respect to i and setting to 0 gives

Also, differentiating with respect to o2 and setting to 0 gives

2 YR (X — X)?
n
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4 independent measurements of permeability were taken at 20°:
40, 60, 50, 45

Substituting into the expressions above, we obtain
=7z =48.8
and

62 =54.7.
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It is important to know whether permeability is different for different
temperatures.

To determine whether temperature has an effect, we consider
measurements of air bag permeability at 2 different temperatures: 0°C
and 20°C:

0: 70, 85, 92, 80, 60
20: 40, o0, 50, 45
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Let us model permeability at each temperature with normal distributions.
Denote the expected value of permeability at O° by 1o and at 20° by .

Let the variance be o2 in both cases.

We are assuming that variability is the same at different temperatures.
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How do we estimate 1q, pog and 022

Let x1,25,..., 2, denote the 1st sample, and let y1, o, . ..

2nd sample.
m = 5 and n = 4.

The density function for one of the X measurements is
o—(z—10)?/(202)
fz) = )
V21to
The density function for one of the Y measurements is

o—(W—1120)?/(202)

fly) = >

2mT0o

, yn denote the
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The log likelihood function is

(2 - p0)? Tj=a(y—#20)° m+

log L =
- 202 202

> n|Og(2W02)

28



Differentiating with respect to 1o and setting to 0 gives
1 i -
po=—) X;=X
mi=1
Similarly, differentiating with respect to 1.5 gives
1 & -
Aoo==) Y;=Y
n j=1
Also, differentiating with respect to 2 gives

o T (X - X)2 PR (Y - )
n+ m

T=77.4,5=48.8,52 =94.9

Estimate of g — oo x — y = 28.6 Is this difference real?
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One way to check if the observed difference is not just due to chance is
to calculate the standard error of the difference (SED):

SED = \/Var(f — 7).

Because the two samples are independent, the variance of the sum is
the sum of the variances:

Var(z — y) = Var(z) + Var(y) = o°/m + o /n.

Therefore, we can estimate the SED by plugging in the estimated value
of o:

SED = /18.98 + 23.725 = 6.5349.

This standard error is small relative to the observed difference (28.6), so the observed
difference is not likely due to chance alone.
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A linear model is a predictive model where the expected value of the
response or outcome variable can be expressed as a linear combination
of predictor variables.

Noise or error is modelled by adding it to the expected value.

Normally, if the noise is modelled at all, it is modelled as a normal
random variable with mean 0.

Usually, linear models can be fit using least-squares methods, where a
linear system of equations must be solved in order to find the parameter
estimates.

Examples: simple and multiple linear regression; autoregressive time
series models

For count data and many other kinds of data, normality is not realistic.

31



A generalized linear model is a predictive model where the expected

value of the response variable is a function of a linear combination of

predictor variables.
Noise or error is modelled with specific distributions.

Count data is better modelled with binomial, Poisson, or negative
binomial, and so on.

If continuous measurements are always positive, such as time until
failure, other models, such as Weibull or lognormal are appropriate.

Generalized linear models are usually fit using maximum likelihood
estimation or a related method.
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The cigbutts data set (in the MPV package) gives counts of cigarette
butts at locations along a sidewalk as a function of distance from a
smoking gazebo.

We can use Poisson regression to model this count data as a function of
distance.
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Recall:

the Poisson distribution with mean )\ is given by

e~ A\

P(X =2x) = =

A common approach to fitting the Poisson distribution regression is to
include a predictor = through a log-linear relationship:

log(\) = Bo + Biz. (1)

The log function used in this way is referred to as the /ink function since
it links the distribution parameter )\ with the predictor z.

This link function is preferred here because it recognizes that A must be
positive, while the right hand side of the above equation can take any
real value.
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If X, is the number of butts observed at the ith location, its expected
value would be )\; and the corresponding distance might be denoted as

d;.

The model for the ith observation is really

AT
e Z)\Z-Z.

xi!

P(X;=x;) =

The likelihood function is the product of such probabilities

The log likelihood is then the sum of the logs of the probabilities:

n n n
logL=—) X+ > zmilogh — > logaz;!.
i=1 i=1 i=1
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Scatterplot of log of cigarette butt counts versus log of distance.
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We suspect a linear relation between the log of \; and d;:
log(A;) = Bo + B1d;
Let’s suppose we know that 55 = 3.55. Then we could say that
log(\;) = 3.55 + B1d;
Plugging this into the log likelihood expression gives

n n n
log L = — Y &3°51F1di 4 N 5,(3.55 + B1d;) — Y log ;).

The z;’s are the observed counts and the d;’s are the distances, so we
can plot this as a function of 3.
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Log likelihood function:
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Log likelihood curve for the cigarette butts example. The maximizer is near -.0017.
A predictive model for log of the expected humber of cigarette butts would be

log(\) = 3.55 — .0017d
where d is distance from the gazebo.
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Using Built-In Software

cig.glm <- glm(x - d, family = polsson)
coef (cig.glm)

## (Intercept) d
i 3.553514 —-0.001696




Using Built-In Software

summary (cig.glm) Scoefficients

#¥# Estimate Std. Error
## (Intercept) 3.553514 0.1735102
## d -0.001696 0.0002009
## z value Pr(>|z])
## (Intercept) 20.480 3.237e-93
## d -8.442 3.127e-17
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Simulating from the Fitted Model

lambda <- exp(3.55 - 0.00166*d)

n <- nrow(cigbutts) # No. of observations in the data set

simcounts <- rpois (n, lambda = lambda)

simcigbutts <- data.frame (count = simcounts, distance
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Simulating from the Fitted Model

plot (count =~ distance, data = simcigbutts,
ylim = range (simcigbutts$count, cigbuttsS$Scount))

points (count = distance, data = cigbutts, col="grey", pch=16)
legend ("topright", legend = e¢("simulated", "actual"), pch=ec(l, 16),
col=c("black", "grey"))
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Modelling Binary Responses

library (MPV)

plot (pl3.1, xlab = "speed", ylab = "success/fail", pch=16)




The first observation to make is that fitting a straight line to such data
makes no sense, since the plotted points do not at all scatter about such
a line.

Furthermore, if such a line were to be fit to the data, it would necessarily
take values outside the interval [0, 1] on subsets of the domain;
interpretation of such values would be difficulit.

In fact, the preferred interpretation of output arising from the fitting of
models to such data is that of probability.

That is, useful models can provide answers to questions such as, “What
is the probability of success at a given target speed?”

Since probabilities must lie within the interval [0, 1], we must consider
models based on nonlinear functions.
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There are many functions which have values in [0, 1].

For the current example, we might reasonably believe that the
probability of success decreases as target speed increases.

Perhaps the most popular function for this purpose is the logistic
function

eCB

et 4+ 1

p(x) =
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Modelling Binary Responses W

curve (exp (x)/ (1 + exp(x)),




A bit of algebra allows us to express z in terms of p, yielding the /ogit
function:

logit(p) = log (%) .

— P

While p is restricted to take values between 0 and 1, the logit function
can take any possible value, so relating the logit function to a straight
line or other linear combination is a possibility. For example,

logit(p(z)) = Bo + L1z

which means that we can express the probability of an event in terms of
a covariate z, using a linear function, but the probability is related to the
linear function through the logit.

The logit is an example of a link function, since it links the expected
response, in this case the probability p(x) to the linear function of the
covariate(s).
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Modelling Binary Responses

pl3.glm <- glm(y ~ x, data = pl3.1, family = binomial)

coef (pl3.glm)

## (Intercept) X
#4# 6.0709 —-0.0177
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Modelling Binary Responses

summary (pl3.glm) Scoefficients

## Estimate Std. Error z value
(Intercept) 6.0709 2.108996 2.879
4 x —0.0177 0.006076 —-2.914
ik Pr(>]z])
(Intercept) 0.003995
H x 0.003567




UBC
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Modelling Binary Responses - Visualizing the Model W

plot (pl3.1, xlab = "speed", ylab = "success/fail", pch=16)

newspeeds <- 200:500 # predict at these target speeds

lines (newspeeds, predict (pl3.glm,

newdata=data.frame (x = newspeeds), type = "response"))
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Simulating from the Fitted Model

p <- exp(6.0709-0.0177%pl3.18x)/(1l+exp(6.0709-0.0177*pl13.1
n <- nrow(pl3.1) # No. of observations 1in the data set
simy <- rbinom(n, 1, prob = p)

simpl3.1 <- data.frame(y = simy, x = pl3.15x)
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Simulating from the Fitted Model

plot (y = x, data = simpl3.1)
points(y - x, data = pl3.1, col="grey", pch=16)

legend (450, .5, legend = c¢("simulated", "actual"), pch=e(l, 16),
col=c("black", "grey"))




