
COSC/DATA 405/505

Modelling and Simulation

1

Numerical Optimization

In many areas of data science one has to solve the following problem:

Given a function f(·), which value of x makes f(x) as large or as small
as possible?

Knowing how to do minimization is sufficient.

If we want to maximize f(x), we simply change the sign and minimize
−f(x).

We call both operations “numerical optimization”.

These slides introduce the basics of an important branch of
optimization: linear programming.

2

Linear Programming

We often need to minimize a function subject to constraints.

When the function is linear and the constraints can be expressed as
linear equations or inequalities, the problem is called a linear
programming problem.

3

Linear Programming

The so-called standard form for the minimization problem in linear
programming is

min
x1,x2,...,xk

C(x) = c1x1 + · · · ckxk

subject to the constraints

a11x1 + · · ·+ a1kxk ≥ b1

a21x1 + · · ·+ a2kxk ≥ b2

· · ·

am1x1 + · · ·+ amkxk ≥ bm

and the nonnegativity conditions x1 ≥ 0, . . . , xk ≥ 0.

4

Linear Programming

The idea is to find values of the decision variables x1, x2, . . . , xn which
minimize the objective function C(x), subject to the constraints and
nonnegativity conditions.

5

Linear Programming: Example

A company has developed two procedures for reducing sulfur dioxide
and carbon dioxide emissions from its factory.

The first procedure reduces equal amounts of each gas at a per unit cost
of $5.

The second procedure reduces the same amount of sulfur dioxide as the
first method, but reduces twice as much carbon dioxide gas; the per unit
cost of this method is $8.

The company is required to reduce sulfur dioxide emissions by 2 million
units and carbon dioxide emissions by 3 million units.

What combination of the two emission procedures will meet this
requirement at minimum cost?

6

Linear Programming: Example

Let x1 denote the amount of the first procedure to be used, and let x2
denote the amount of the second procedure to be used.

For convenience, we will let these amounts be expressed in millions of
units.

Then the cost (in millions of dollars) can be expressed as

C = 5x1 +8x2.

Since both methods reduce sulfur dioxide emissions at the same rate,
the number of units of sulfur dioxide reduced will then be

x1 + x2

Noting that there is a requirement to reduce the sulfur dioxide amount
by 2 million units, we have the constraint

x1 + x2 ≥ 2.

7

The carbon dioxide reduction requirement is 3 million units, and the
second method reduces carbon dioxide twice as fast as the first method,
so we have the second constraint

x1 +2x2 ≥ 3.

Linear Programming: Example

Finally, we note that x1 and x2 must be nonnegative, since we cannot
use negative amounts of either procedure.

Thus, we obtain the linear programming problem:

minC = 5x1 +8x2

subject to the constraints

x1 + x2 ≥ 2

x1 +2x2 ≥ 3

and

x1, x2 ≥ 0.

8

Linear Programming: Example

These relations are graphed in the figure on the next slide.

The region shaded in grey is the feasible region; this is the set of all
possible (x1, x2) combinations which satisfy the constraints.

The unshaded area contains those combinations of values where the
constraints are violated.

9

Linear Programming: Example

A graphical interpretation of the pollution emission linear programming
example.

The grey region corresponds to values of x1

and x2 which satisfy all of the constraints.

The dashed grey line corresponds to values of
x1 and x2 which give the minimum cost (13).

This line intersects the feasible region at ex-
actly one point - the optimal solution to the
problem (1,1).

10

Linear Programming: Example

The gradient of the function C(x) is (5,8), so this vector gives the
direction of most rapid increase for that function.

The level sets or contours of this function are perpendicular to this
vector.

One of the level sets is indicated as a dashed line in the earlier figure.

The solution of the minimization problem lies at the intersection of the
first contour which intersects the feasible region.

If this happens at a single point, we have a unique minimizer.

In this example, this intersection is located at the point (1,1).

11

Linear Programming

It can be shown that the only possible minimizers for such linear
programming problems must be at the intersections of the constraint
boundaries, as in the earlier example.

The points of intersection of the constraints are called basic solutions.

If these intersection points lie in the feasible region, they are called
basic feasible solutions.

If there is at least one basic feasible solution, then one of them will be an
optimal solution.

In the above example, the point (1,1) is the optimal solution.

12

Solving linear programming problems in R

There is more than one linear programming function available in R, but
the lp() function in the lpSolve package may be the most stable version
currently available.

It is based on the revised simplex method; this method tests a number
of extreme points of the feasible region to see whether they are optimal.

13

Solving linear programming problems in R

The lp() function has a number of parameters; the following are needed
to solve minimization problems like the one in the earlier example.

• objective.in – the vector of coefficients of the objective function.
• const.mat – a matrix containing the coefficients of the decision

variables in the left-hand side of the constraints; each row
corresponds to a constraint.

• const.dir – a character vector indicating the direction of the
constraint inequalities; some of the possible entries are >=, == and
<=.

• const.rhs – a vector containing the constants given on the
right-hand side of the constraints

14

Solving Linear Programming Problems in R

To solve the minimization problem set out in the pollution example, type
library(lpSolve)
eg.lp <- lp(objective.in=c(5, 8), const.mat=matrix(c(1, 1, 1, 2),

nrow=2), const.rhs=c(2, 3), const.dir=c(">=", ">="))
eg.lp

Success: the objective function is 13

eg.lp$solution

[1] 1 1

The output tells us that the minimizer is at x1 = 1, x2 = 1, and the
minimum value of the objective function is 13.

15

Maximization and other kinds of constraints

The lp() function can handle maximization problems with the use of the
direction="max" parameter.

Furthermore, the const.dir parameter allows for different types of
inequalities.

16

Maximization: Example

We will solve the problem:

maxC = 5x1 +8x2

subject to the constraints

x1 + x2 ≤ 2

x1 +2x2 = 3

and

x1, x2 ≥ 0.

17

Maximization and other kinds of constraints

In R, this can be coded as

eg.lp <- lp(objective.in=c(5, 8),

const.mat=matrix(c(1, 1, 1, 2), nrow=2),

const.rhs=c(2, 3),

const.dir=c("<=", "="), direction="max")

eg.lp$solution

[1] 1 1

The solution is (1,1), giving a maximum value of 13.

18

Special situations: Multiple Optima

It sometimes happens that there are multiple solutions for a linear
programming problem.

19

Multiple Optima: Example

A slight modification of the pollution emission example is

minC = 4x1 +8x2

subject to the constraints

x1 + x2 ≥ 2

x1 +2x2 ≥ 3

and

x1, x2 ≥ 0.

This problem has a solution at (1,1) as well as at (3,0). All points on
the line joining these two points are solutions as well. The figure on the
next slide shows this graphically.

20

Multiple Optima

A plot of the gradient of the objective function and the constraint
boundaries for the pollution example.

The points on the heavy black segment
are all optimal for this problem.

The lp() function does not alert the user to the existence of multiple
minima.

In fact, the output from this function for the modified pollution emission
example is the solution x1 = 3, x2 = 0.

21

Degeneracy

For a problem with m decision variables, degeneracy arises when more
than m constraint boundaries intersect at a single point.

This situation is quite rare, but it has potential to cause difficulties for
the simplex method, so it is important to be aware of this condition.

In very rare circumstances, degeneracy can prevent the method from
converging to the optimal solution; most of the time, however, there is
little to worry about.

22

Degeneracy: Example

The following problem has a point of degeneracy which is not at the
optimum; however, the lp() function still finds the optimum without
difficulty.

minC = 3x1 + x2

subject to the constraints

x1 + x2 ≥ 2

x1 +2x2 ≥ 3

x1 +3x2 ≥ 4

4x1 + x2 ≥ 4

and

x1, x2 ≥ 0.

23

Degeneracy: Example

An illustration of the concept of degeneracy.

A plot of four constraint boundaries,
one of which is redundant, leading to
degeneracy.
The feasible region is shaded.

24

Degeneracy

This problem can be solved easily:

degen.lp <- lp(objective.in=c(3, 1),

const.mat=matrix(c(1, 1, 1, 4, 1, 2, 3, 1), nrow=4),

const.rhs=c(2, 3, 4, 4), const.dir=rep(">=", 4))

degen.lp

Success: the objective function is 3.333333

degen.lp$solution

[1] 0.6666667 1.3333333

25

Infeasibility

Infeasibility is a more common problem.

When the constraints cannot simultaneously be satisfied there is no
feasible region.

Then no feasible solution exists.

26

Infeasibility: Example

minC = 5x1 +8x2

subject to the constraints

x1 + x2 ≥ 2

x1 + x2 ≤ 1

and

x1, x2 ≥ 0.

It is obvious that the constraints cannot simultaneously be satisfied.

27

Infeasibility: Example

Here is the output from the lp() function:

eg.lp <- lp(objective.in=c(5, 8),

const.mat=matrix(c(1, 1, 1, 1), nrow=2),

const.rhs=c(2, 1), const.dir=c(">=", "<="))

eg.lp

Error: no feasible solution found

28

Unboundedness

In rare instances, the constraints and objective function give rise to an
unbounded solution.

A trivial example of unboundedness arises when solving the problem

maxC = 5x1 +8x2

subject to the constraints

x1 + x2 ≥ 2

x1 +2x2 ≥ 3

and

x1, x2 ≥ 0.

The feasible region for this problem was plotted earlier.

However, instead of trying to minimize the objective function, we are
now maximizing, so we follow the direction of increasing the objective
function this time.

29

Unboundedness

We can make the objective function as large as we wish, by taking x1
and x2 arbitrarily large.

Here is what happens when lp() is applied to this problem:

eg.lp <- lp(objective.in=c(5, 8),

const.mat=matrix(c(1, 1, 1, 2), nrow=2),

const.rhs=c(2, 3), const.dir=c(">=", ">="),

direction="max")

eg.lp

Error: status 3

The condition of unboundedness will most often arise when constraints
and/or the objective function have not been formulated correctly.

30

Unrestricted variables

Sometimes a decision variable is not restricted to be nonnegative. The
lp() function is not set up to handle this case directly. However, a
simple device gets around this difficulty.

If x is unrestricted in sign, then x can be written as x1 − x2, where
x1 ≥ 0 and x2 ≥ 0.

This means that every unrestricted variable in a linear programming
problem can be replaced by the difference of two nonnegative variables.

31

Unrestricted Variables: Example

We will solve the problem:

minC = x1 +10x2

subject to the constraints

x1 + x2 ≥ 2

x1 − x2 ≤ 3

and

x1 ≥ 0.

32

Unrestricted variables

Noting that x2 is unrestricted in sign, we set x2 = x3 − x4 for
nonnegative x3 and x4. Plugging these new variables into the problem
gives

minC = x1 +10x3 − 10x4

subject to the constraints

x1 + x3 − x4 ≥ 2

x1 − x3 + x4 ≤ 3

and

x1 ≥ 0, x3 ≥ 0, x4 ≥ 0.

33

Unrestricted Variables: Example

Converting this to R code, we have

unres.lp <- lp(objective.in=c(1, 10, -10),

const.mat=matrix(c(1, 1, 1, -1, -1, 1), nrow=2),

const.rhs=c(2, 3), const.dir=c(">=", "<="))

unres.lp

Success: the objective function is -2.5

unres.lp$solution

[1] 2.5 0.0 0.5

The solution is given by x1 = 2.5 and x2 = x3 − x4 = −0.5.

34

