
Elements of R Programming

COSC 405, DATA 405 and DATA 505

1

Flow control in R

Computer programs often require repeated execution of the same
operation, such as when adding a sequence of numbers, and so on.

There are several functions in R that control how many times statements
are repeated.

There are also functions which evaluate conditions to decide whether a
command should be executed or not.

We will describe the for() and if() functions here.

2

Example

We can add the elements of a vector using the sum() function, but if we
want to add up a sequence of vectors, we might do it with a for loop.

Suppose we want to simultaneously add 1+ 2+ 3+ . . .+10 and
12 +22 + · · ·+102.

In other words, we want to add vectors of the form [i i2], for
i = 1,2, . . . ,10.

We will store the resulting sums in a vector called sums.

3

Example

We will start by assigning [0 0] to sums:

sums <- c(0, 0)

and sequentially adding vectors [1 1], [4 4], and so on:

sums <- sums + c(1, 1ˆ2)

sums

[1] 1 1

sums <- sums + c(2, 2ˆ2)

sums

[1] 3 5

4

The for() function

The command we want to repeatedly execute is of the form

sums <- sums + c(n, nˆ2)

where n is changing, progressing through the values 1, 2, . . . , 10.

We can use the : function to generate these values:

1:10

[1] 1 2 3 4 5 6 7 8 9 10

and for each of these values, we want to execute the command
sums <- sums + c(n, nˆ2).

5

The for() function

The for() function allows us to repeat a command a specified number
of times.

Syntax:

for (n in values) command

This sequentially sets a variable called n equal to each of the elements
of values.

For each value of n, the listed command is executed.

6

Example

For our example, the necessary code is

sums <- c(0, 0) # assign a baseline value to sums

for (n in 1:10) sums <- sums + c(n, nˆ2)

We can see the result by typing the object name, as usual

sums

[1] 55 385

7

Repeating several commands at a time

If we want to execute several commands at once, we enclose them in
curly brackets:

Syntax:

for (n in values) {

command 1

command 2

...

}

8

Example - simulation of normal variates

Simulating normal random variables is possible in a variety of ways.

If we add up 12 uniform random variables on [−.5, .5], we can get a sum
that follows a close approximation to the standard normal distribution.

We will use a for() loop to construct a large vector of such values so
that we can draw a histogram and QQ-plot, to verify that we have
succeeded in simulating normal random variables.

9

Example - simulation of normal variates

We can use the runif() function to simulate the uniform variates that
we will need.

Simulation of uniform variates:

N <- 10000

U <- runif(N, min=-.5, max=.5)

U contains values in the interval
[−0.5,0.5].

A histogram of the simulated
uniform values:

hist(U, col="blue")

Histogram of U

U

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2 0.4

0
10

0
30

0
50

0

10

Example - simulation of normal variates

We initially assign 0 to our outcome vector Z.

Then we successively add a uniform vector of size N = 10000 to Z, 12
times.

Z <- 0; N <- 10000

for (i in 1:12) {
U <- runif(N, min=-.5, max=.5)

Z <- Z + U

}

Note that we started with a Z which had only one entry, and successively
added vectors of size 10000. R automatically changes the length of Z to
make elementwise addition with U possible.

11

Example - simulation of normal variates

The histogram and QQ-plot of these simulated data are given below, the
result of executing the following code.

Z

F
re

qu
en

cy

−4 −2 0 2 4

0
50

0
10

00
15

00

−4 −2 0 2 4

−
4

−
2

0
2

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

par(mfrow=c(1,2), mar=c(4, 4, .1, .1))

hist(Z)

qqnorm(Z); qqline(Z)

12

Example - Squaring a standard normal variate

If Z is a standard normal random, then X = Z2 is called a chi-squared
random variable on 1 degree of freedom.

X

F
re

qu
en

cy

0 5 10 15

0
10

00
30

00
50

00
70

00

The distribution of a sample of
chi-squared random variates on 1
degree of freedom is pictured to the
left, the effect of executing the
following code:

X <- Zˆ2; hist(X)

13

Example - nesting for() loops

If Z1, Z2, . . . , Zk are independent standard normal random variables,
then the sum of their squares is a chi-squared random variable on k
degrees of freedom.

We can use nested for() loops to simulate these sums of squared
normals.

For example, suppose k = 7 as in the following:

X <- 0; k <- 7

for (i in 1:k) {
Z <- 0

for (j in 1:12) {
U <- runif(N, min = -.5, max = .5)

Z <- Z + U # Z is standard normal

}
X <- X + Zˆ2 # X is chi-squared

}

14

Example - nesting for() loops

The histogram to the right shows
what a chi-squared distribution
on 7 degrees of freedom looks
like:

hist(X, main="")

It is skewed, but not as much as
when the number of degrees of
freedom is smaller.

X

F
re

qu
en

cy

0 5 10 15 20 25 30

0
50

0
10

00
15

00
20

00

15

The if() statement

The if() statement allows us to control which statements are executed.

Syntax:

if (condition) {commands |TRUE}

if (condition) {commands |TRUE} else {commands | FALSE}

This statement causes a set of commands to be invoked if condition
evaluates to TRUE.

The else part is optional, and provides an alternative set of commands
which are to be invoked in case the logical variable is FALSE.

16

Example

x <- 3

if (x > 2) y <- 2 * x else y <- 3 * x

Since x > 2 is TRUE, y is assigned 2 * 3 = 6. If it hadn’t been true, y
would have been assigned the value of 3 * x.

17

The if() statement: Caution!

Be careful how you type the else statement.

Typing it as

if (condition) {commands when TRUE}

else {commands when FALSE}

may produce an error, because R will execute the first line before you
have time to enter the second.

If these two lines appear within a block of commands in curly brackets,
they won’t trigger an error, because R will collect all the lines before it
starts to act on any of them.

18

The if() statement: Caution!

To avoid this kind of difficulty, use the form

if (condition) {

commands when TRUE

} else {

commands when FALSE

}

19

The if() statement: Another Warning

R also allows numerical values to be used as the value of condition.

These are converted to logical values using the rule that zero becomes
FALSE, and any other value becomes TRUE.

Missing values are not allowed for the condition, and will trigger an error.

20

Functions

As we have seen, R calculations are carried out by functions, and
graphs are produced by functions.

The usual composition of a function is

• a header that includes the word function and an argument list
(which might be empty)

• a body which includes a set of statements enclosed in curly
brackets {}.

Function names should be chosen to describe the action of the function.
For example, median() computes medians, and boxplot() produces
box plots.

21

Example

We will write a function to approximately simulate standard normal
random variables. An appropriate header for the function could be:

rStdNorm <- function(n)

Note that this function will take n as an input. The output should be that
number of standard normal variates.

At some point in the body of the function there is normally a statement
like return(Z) which specifies the output value of the function. If there
is no return() statement, then the value of the last statement executed
is returned.

22

Example

In our standard normal simulator, we will want to return a vector of
length n. We will use Z as the name of this object.

rStdNorm <- function(n) {
...

return(Z)

}

23

Example

Using the sum of uniforms concept from the earlier example, we will use
a function body of the form:

{
Z <- 0

for (j in 1:12) {
U <- runif(n, min = -.5, max = .5)

Z <- Z + U

}
return(Z)

}

24

Example

Putting the header and body together, we have the following function:

rStdNorm <- function(n) {
Z <- 0

for (j in 1:12) {
U <- runif(n, min = -.5, max = .5)

Z <- Z + U

}
return(Z)

}

25

Example

A trial with 3 values is executed as follows:

rStdNorm(3)

[1] -0.6548109 1.6222985 0.7795247

26

Functions can take any number of arguments

We can use our new rStdNorm() function inside a function which
calculates chi-squared random variables on k degrees of freedom.

Two arguments, n and k will be needed in this function.

rChisq <- function(n, k) {
X <- 0

for (i in 1:k) {
Z <- rStdNorm(n)

X <- X + Zˆ2

}
return(X)

}

27

Functions can take any number of arguments

A trial with k = 17 degrees of freedom, and 2 values is executed as
follows:

rChisq(2, 17)

[1] 14.26515 18.01847

28

Use of default arguments

To give the user of a function a hint as to the kind of input that the
function is expecting, we may give default values to some arguments.

If the user doesn’t specify the value, the default will be used.

29

Example

We could have used the header, i.e. the first line of the function,

rChisq <- function(n, k = 1)

to indicate that if a user called rChisq(10) without specifying k, then it
should act as though k = 1.

30

Function environment

We conclude our brief discussion of functions with a mention of the
function’s environment.

We won’t give a complete description here, but will limit ourselves to the
following circular definition: the environment is a reference to the
environment in which the function was defined.

This has implications for where objects are that the function can access.

31

Example

A function myfun is created in an environment that does not contain
mydata:

myfun <- function() {
mymean <- mean(mydata)

return(mymean)

}
myfun() # execute function

Error in mean(mydata): object ’mydata’ not found

32

Example

Now, consider what happens when mydata is in the function’s
environment:

mydata <- rChisq(4, 1)

myfun() # mydata exists now and mymean exists internally to myfun

[1] 0.3870882

Note, as well, that mymean does not exist in the workspace, only locally
to myfun:

mymean

Error in eval(expr, envir, enclos): object ’mymean’

not found

33

Exercise - smoothing a scatterplot

The faithful data set consists of the waiting times until the next
eruption of the Old Faithful geyser together with the corresponding
eruption times.

The scatterplot for these data can be obtained by typing

plot(faithful, pch=16, col="black")

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
70

90

eruptions

w
ai

tin
g

34

Smoothing a scatterplot

A simple way to make predictions from such data is to smooth the
scatterplot of the y values that are plotted against the x values.

One way to do this is to use moving averages.

In other words, just take averages of y values that are near each other
according to their x values.

Join these averages together to form a curve.

35

Smoothing a scatterplot

We will construct a function called smoother() which outputs a new
data frame consisting of a column of equally spaced x values and a
column of corresponding local averages, taking the following arguments

• x: the vector of x values

• y: the vector of y values

• x.min: a constant which specifies the left boundary of the plotted
curve

• x.max: a constant which specifies the right boundary of the plotted
curve

• window: a constant giving the range of x values used to calculate
the moving averages

36

Smoothing a scatterplot - function header

The function header:

smoother <- function(x, y, x.min, x.max, window) {

37

Smoothing a scatterplot - function output

The output for this function will be a data frame with 2 columns: x and y,
which will correspond to the y-averages and the corresponding x

locations where the averages are taken.

Thus, we include a line such as the one at the end of the following
body-less function:

smoother <- function(x, y, x.min, x.max, window) {
...

data.frame(x = xpoints, y = yaverages)

}

38

Smoothing a scatterplot - function body

We use the seq() function to create a sequence of 401 equally spaced x

values, starting at x.min and ending at x.max.

We include a line of code that assigns this sequence to an object called
xpoints:

smoother <- function(x, y, x.min, x.max, window) {
xpoints <- seq(x.min, x.max, len=401)

...

data.frame(x = xpoints, y = yaverages)

}

39

Smoothing a scatterplot - function body

We use a for() loop to calculate the column of corresponding
yaverages.

To do this, we need to first initialize the yaverages object to have the
same number of elements as xpoints.

Thus, we Include the following line in the function:

yaverages <- numeric(length(xpoints))

40

Smoothing a scatterplot - function body

Next, for each value of i, running from 1 through xpoints, we need to
determine which elements of the original data vector x are close to
xpoints[i], so that we can take the average of the corresponding y

values only.

In other words, we want to determine the indices of x for which the
absolute value of x - xpoints[i] is less than the window parameter
that was specified in the argument to the smoother() function.

smoother <- function(x, y, x.min, x.max, window) {
xpoints <- seq(x.min, x.max, len=401)

yaverages <- numeric(length(xpoints))

for (i in 1:length(xpoints)) {
indices <- which(abs(x - xpoints[i]) < window)

}
data.frame(x = xpoints, y = yaverages)

}

41

Smoothing a scatterplot - function body

Within the for() loop just created, we add a line of code which assigns
the average of the values in y[indices] to yaverages[i]:

smoother <- function(x, y, x.min, x.max, window){
xpoints <- seq(x.min, x.max, len=401)

yaverages <- numeric(length(xpoints))

for (i in 1:length(xpoints)) {
indices <- which(abs(x - xpoints[i]) < window)

yaverages[i] <- mean(y[indices])

}
data.frame(x = xpoints, y = yaverages)

}

42

Smoothing a scatterplot - testing the function

We should now have a working function, which we can test on artificial
data, in this case, a noisy parabola:

For example,

x <- seq(0, 3, length=20)

y <- xˆ2 + rnorm(20)

plot(x, y, pch=16)

lines(smoother(x, y,

x.min=0.25,

x.max=2.75,

window=0.5), lwd=2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8

x

y

43

Smoothing a scatterplot - testing the function

For example,

x <- seq(0, 3, length=20)

y <- xˆ2 + rnorm(20)

plot(x, y, pch=16)

lines(smoother(x, y,

x.min=0.25,

x.max=2.75,

window=0.06), lwd=2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8

x

y

When window is very close to 0, we see missing pieces in the smooth
curve. Why?

If the window parameter is too close to 0, there will be no data points
close enough to some of the values in xpoints, so you will be averaging
no data, thus, there is nothing to plot.

44

Adding an error message - using if and stop()

To avoid such a problem, we include an error message in the function to
tell the user that the window parameter is too small.

The stop() function provides such a message and aborts execution of
the function.

Within the for loop to your function, we include the following lines of
code:

if (length(indices) < 1) {
stop("Your choice of window width is too small.")

} else {
yaverages[i] <- mean(y[indices])

}

45

Smoothing a scatterplot

smoother <- function(x, y, x.min, x.max, window=1) {
xpoints <- seq(x.min, x.max, len=401)

yaverages <- numeric(401)

for (i in 1:length(xpoints)) {
indices <- which(abs(x - xpoints[i]) < window)

if (length(indices) < 1) {
stop("Your choice of window width is too small.")

} else {
yaverages[i] <- mean(y[indices])

}
}
data.frame(x = xpoints, y = yaverages)

}

46

Smoothing a scatterplot

Finally, note that the so-called “smooth” curve is still quite bumpy.

To reduce the bumpiness, we can iterate the smoothing procedure.

In other words, we can repeat the smoothing procedure on the output
from smoother(), as follows:

output1 <- smoother(x, y, 0.25, 2.75, window = .5)

output2 <- smoother(output1$x, output1$y, 0.25, 2.75,

window = .25)

Observe that the window parameter does not have to be the same for
each iteration.

47

Smoothing a scatterplot

We now construct a new function called doublesmoother() which
takes the same arguments as smoother, but where window is now
assumed to be a vector with 2 elements.

The output from doublesmoother() is again a data frame consisting of
xpoints and yaverages as in smoother() but should be the result of
the second round of smoothing.

doublesmoother <- function(x, y, x.min, x.max, window) {
output1 <- smoother(x, y, x.min, x.max, window[1])

output2 <- smoother(output1$x, output1$y, x.min, x.max,

window[2])

output2

}

48

Smoothing the faithful scatterplot

Applying the doublesmoother() func-
tion to the faithful data frame, with
a window parameter of 1 unit for the
first level of smoothing and a value
of 0.1 unit for the second level, and
equally spaced xpoints in the interval
[1.5,5.0]: 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

plot(faithful, pch=16, col="grey")

lines(doublesmoother(faithful$eruptions, faithful$waiting,

1.5, 5.0, c(1, 0.1)), col="blue", lwd=2)

49

