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Simulating Data from Regression Models

The simple linear regression model relating a response variable y to a
predictor variable x is

y = β0 + β1x+ ε

where β0 is the intercept and β1 is the slope of the regression line.

ε is a random quantity representing noise about the line.

2



Simulating Data from Regression Models

The noise is often assumed to be a sequence of independent normal
random variables with mean 0 and constant variance σ2.

e.g. consider 500 values of ε which have σ = 8:

eps <- rnorm(500, sd = 8)

ts.plot(eps, ylab="noise")
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Simulating Regression Data

In the simple linear regression model, the noise is added to a line of
slope β1 and intercept β0.

e.g. Suppose x values are taken at {1, 2, 3, . . . , 50}. If the slope is 3.5
and the intercept is 7.0, and the noise is normal with standard deviation
16.0, we have

x <- 1:50

eps <- rnorm(50, sd = 16)

y <- 3.5 + 7.0*x + eps
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Simulating Regression Data

plot(y ˜ x)

abline(3.5, 7)
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Simulating Regression Data

Suppose the standard deviation is larger: 40.0, we have

x <- 1:50

eps <- rnorm(50, sd = 40 )

y <- 3.5 + 7.0*x + eps
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Simulating Regression Data

plot(y ˜ x)

abline(3.5, 7)
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... larger noise standard deviation gives more variation about the true line ...
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Regression Data Example

The p2.12 data frame in the MPV package has 12 observations on the
number of pounds of steam used per month at a plant and the average
monthly ambient temperature.

This data frame contains the following columns:

temp ambient temperature (in degrees F)

usage usage (in thousands of pounds)
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Plotting the Data

library(MPV)

plot(usage ˜ temp, data = p2.12)
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Estimating the Slope and Intercept of the Best Fit Line

usage.lm <- lm(usage ˜ temp, data = p2.12)

summary(usage.lm)$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -6.332087 1.67004573 -3.791565 3.534310e-03

## temp 9.208468 0.03382295 272.254999 1.099192e-20

Fitted line: ŷ = −6.332+ 9.208x

The p-values given in the right hand column are both small strong
evidence that the intercept and slope are nonzero. We will see what this
means, using simulation, later on in this set of slides.
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Plotting the Best Fit Line

plot(usage ˜ temp, data = p2.12)

abline(usage.lm)
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Residuals: Estimates of the Error

residuals <- resid(usage.lm)

plot(residuals ˜ temp, data = p2.12)

abline(h = 0)
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Modelling the Error

par(mfrow=c(1,2))

hist(residuals)

qqnorm(residuals); qqline(residuals)

Histogram of residuals
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Normality is reasonable. Mean
is 0 but what is the standard deviation?
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Estimating the noise standard deviation

summary(usage.lm)$sigma

## [1] 1.945628
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Using Simulation to Learn about Regression

The regression procedure is based on mathematics which would take
too long to go through here – there are other courses that cover that
material.

Instead, we can use simulation to gain intuition into the procedure.

By simulating new data where we know the true coefficients and the true
errors, we can see how the regression estimates differ from the truth.

We can also learn some things about the residuals and how they relate
to the true errors.
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Simulated Linear Regression Data

We will simulate data that “looks” like the data in p2.12:
p2.12sim <- p2.12 # p2.12sim will soon contain simulated data
eps <- rnorm(n = nrow(p2.12sim) , sd = 1.945) # simulated noise
p2.12sim$usage <- -6.332 + 9.208*p2.12sim$temp +eps
plot(usage ˜ temp, data = p2.12sim)
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Simulated Linear Regression Data

p2.12sim.lm <- lm(usage ˜ temp, data = p2.12sim)

#estimated intercept and slope for simulated data

coef(p2.12sim.lm)

## (Intercept) temp

## -7.905550 9.227047

summary(p2.12sim.lm)$sigma # sd estimate

## [1] 1.988767

Now we see the estimates of the intercept, slope and estimate of σ differ from the true values.
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Plotting the Best Fit Line - Simulated Data

plot(usage ˜ temp, data = p2.12sim)

abline(p2.12sim.lm)
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The True Errors are Normal; What about the Residuals?

residuals <- resid(p2.12sim.lm)

par(mfrow=c(1,2)); hist(residuals)

qqnorm(residuals); qqline(residuals)

Histogram of residuals
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qreference() could also be checked.
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How do the Simulated Residuals Behave?

Compare the simulated residuals with the true errors:

plot(eps ˜ residuals)

abline(0,1)
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What is the distribution of the slope estimate?

By repeatedly simulating data sets and estimating the slope each time,
we can see where some of the regression output comes from:

Nsims <- 20000; slopes <- sderrors <- numeric(Nsims)

for (i in 1:Nsims) {# 20000 simulated data sets

eps <- rnorm(n = nrow(p2.12sim) , sd = 1.945)

p2.12sim$usage <- -6.332 + 9.208*p2.12sim$temp +eps

p2.12sim.lm <- lm(usage ˜ temp, data = p2.12sim)

slopes[i] <- coef(p2.12sim.lm)[2]

sderrors[i] <- summary(p2.12sim.lm)$coefficients[2,2]

}
mean(slopes); sd(slopes)

## [1] 9.207975

## [1] 0.03406831

Compare with the estimate (9.208)
and standard error (.0338) given on
slide 9.

Note that we could do the same procedure for the
intercept using coef()[1].

21



What is the distribution of the slope estimate?

par(mfrow=c(1,2)); hist(slopes); qqnorm(slopes); qqline(slopes)

Histogram of slopes
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... pretty convincing evidence that the slope estimate is approximately normally distributed ...
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Testing whether the true slope is 0

This is summarized in the 3rd and 4th columns of the regression output
on slide 4. What does it mean?

Statistical theory says that if the true slope is β, then the distribution of
the

slope estimate − β

standard error estimate
is a t distribution on n− 2 degrees of freedom.

We can verify this for the case where the true slope is 9.208 and n = 12:

ratios <- (slopes - 9.208)/sderrors

n <- nrow(p2.12)
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Plotting the t ratios

par(mfrow=c(1,2)); hist(ratios)

qqplot(ratios, qt((1:9999)/10000, df = n-2),

ylab="quantiles", xlab="ordered t-ratios")

abline(0,1)

Histogram of ratios
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... pretty convincing evidence that the t-ratios follow a t-distribution on 10 degrees of freedom ...
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How believable is it that the true slope is 0?
obstRatio <- 9.208/.0338 # observed t-ratio
par(mfrow=c(1,2))
curve(dt(x, df=10), -300, 300, ylab="t-dist")
curve(log(dt(x, df=10), base=10), -300, 300,

ylab="t-dist, base-10 log scale")
rug(obstRatio, col=2, lwd=3) # locate the observed t-ratio
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The probabilities are so
tiny that we use a base-10
log to visualize the prob-
ability that we could see
such a large slope if the
true slope were 0.

The probability, which is
the area under the curve
to the right of 272.25, is
less than 10−20 – this is
the p-value for the slope
given on slide 4.
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Simulated Linear Regression Data - Noisier

We can use simulation to consider other scenarios. What if conditions
change so that there is more variability?
eps <- rnorm(nrow(p2.12), sd = 100) # simulated noise - larger sd
p2.12sim$usage <- -6.332 + 9.208*p2.12sim$temp +eps
plot(usage ˜ temp, data = p2.12sim, ylim = c(0, 800))
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Simulated Linear Regression Data – Noisier

p2.12sim.lm <- lm(usage ˜ temp, data = p2.12sim)

#estimated intercept and slope for simulated data

coef(p2.12sim.lm)

## (Intercept) temp

## -1.471046 7.652513

summary(p2.12sim.lm)$sigma # sd estimate

## [1] 103.0971

The estimates of the intercept, slope and estimate of σ differ a lot from the true values.
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Plotting the Best Fit Line - Noisier Data

plot(usage ˜ temp, data = p2.12sim)

abline(p2.12sim.lm)
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How do the Noisier Simulated Residuals Behave?

residuals <- resid(p2.12sim.lm)

par(mfrow=c(1,2))

hist(residuals)

qqnorm(residuals); qqline(residuals)

Histogram of residuals
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How do the Noisier Simulated Residuals Behave?

Compare the simulated residuals with the true errors:

plot(eps ˜ residuals)

abline(0,1)
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Notice that the scale on the vertical axis is much larger than before. Why?

The residuals differ more from the true errors than before.
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Another Example: Model Car Data

Consider the data on the model car that was released from various
points on a ramp and the distance traveled was measured.

library(DAAG)

mcar.lm <- lm(distance.traveled ˜ starting.point,

data = modelcars)

summary(mcar.lm)$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.083333 1.0779514 7.498792 2.065661e-05

## starting.point 2.013889 0.1312041 15.349288 2.801914e-08

31



The Model Car Data

The fitted model is

y = 8.0833333+ 2.0138889x+ ε

where y is distance and x is starting point. The error (ε) standard
deviation is

summary(mcar.lm)$sigma

## [1] 1.524453
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Plotting the Model Car Data

plot(distance.traveled ˜ starting.point,

data = modelcars)

abline(mcar.lm)
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Use Simulation to Test the Slope

b0 <- coef(mcar.lm)[1]

b1 <- coef(mcar.lm)[2]

sdCar <- summary(mcar.lm)$sigma

Nsims <- 20000; slopes <- sderrors <- numeric(Nsims)

for (i in 1:Nsims) {# 20000 simulated data sets

eps <- rnorm(n = nrow(modelcars) , sd = sdCar)

modelcars$distance.traveled <-

b0 + b1*modelcars$starting.point +eps

mcar.lm <- lm(distance.traveled ˜ starting.point,

data = modelcars); slopes[i] <- coef(mcar.lm)[2]

sderrors[i] <- summary(mcar.lm)$coefficients[2,2]

}
mean(slopes); sd(slopes)

## [1] 2.015052

## [1] 0.1308729

Compare with the estimate (2.014)
and standard error (.1312) given on
slide 31.
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What is the distribution of the slope estimate?
par(mfrow=c(1,2)); hist(slopes); qqnorm(slopes); qqline(slopes)

Histogram of slopes
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... additional evidence that the slope estimate is approximately normally distributed ...
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Testing whether the true slope is 0
ratios <- (slopes - 2.015)/sderrors
n <- nrow(modelcars)

par(mfrow=c(1,2)); hist(ratios)
qqplot(ratios, qt((1:9999)/10000, df = n-2),

ylab="quantiles", xlab="ordered t-ratios")
abline(0,1)

Histogram of ratios
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... additional evidence that the t-ratios follow a t-distribution on 10 degrees of freedom ...
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How reasonable is it that the true slope is 0?
obstRatio <- 2.015/.1309# observed t-ratio
par(mfrow=c(1,2))
curve(dt(x, df=10), -20, 20, ylab="t-dist")
curve(log(dt(x, df=10), base=10), -20, 20,

ylab="t-dist, base-10 log scale")
rug(obstRatio, col=2, lwd=3) # locate the observed t-ratio
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The probabilities are
again so tiny that we use
a base-10 log to visualize
the probability that we
could see such a large
slope if the true slope
were 0.

The probability, which is
the area under the curve
to the right of 15.349, is
less than 10−7 – this is the
p-value for the slope given
on slide 26.
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Simulated Linear Regression Data - Heavy Tailed Noise

x <- p2.12$temp

eps <- 3*rt(n, df=1.05) # scaled t on 1.05 degrees of freedom

y <- -6.332 + 9.208*x + eps

xy.df <- data.frame(x, y)

plot(y ˜ x, data = xy.df)
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Simulated Linear Regression Data - Heavy Tailed Noise

y.lm <- lm(y ˜ x, data = xy.df)

# estimated beta0 hat and beta1 hat

coef(y.lm)

## (Intercept) x

## 197.875753 6.689907

# estimated noise standard deviation

summary(y.lm)$sigma

## [1] 222.311
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Plotting the Best Fit Line - Simulated

plot(y ˜ x, data = xy.df)

abline(y.lm)

abline(-6.332, 9.208, lty=2)
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Dashed line: true line; Solid
line: estimated line

Notice the effect of the influential outlier on the left. The slope of the fitted line is much smaller than the
true slope. The outlier on the right is less influential since its magnitude is smaller. Both outliers have
increased the intercept - a lot.
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Simulated Linear Regression Data - Heavy Tailed Noise

residuals <- resid(y.lm)

qqnorm(residuals)

qqline(residuals)
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Clearly, not normal (which is correct, since the simulation is based on t errors, not normal errors)
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How do the Heavy-Tailed Simulated Residuals Behave?
residuals <- resid(y.lm)
par(mfrow=c(1,2))
hist(residuals)
qqnorm(residuals); qqline(residuals)

Histogram of residuals
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The residuals for the outliers are much higher than expected for normal data (not surprising, since this is
not normal data).
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How do the Heavy-Tailed Simulated Residuals Behave?

Compare the simulated residuals with the true errors:

plot(eps ˜ residuals)

abline(0,1)
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Simulated Linear Regression Data - Nonconstant Variance

# increasing variance

eps <- rnorm(n, sd=(x-15))

y <- -6.332 + 9.208*x +eps

xy.df <- data.frame(x,y)

y.lm <- lm(y ˜ x, data = xy.df)

#estimated beta0 hat and beta1 hat

coef(y.lm)

## (Intercept) x

## -1.679628 9.345003

# estimated noise standard deviation (not valid!)

summary(y.lm)$sigma

## [1] 35.55287
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Plotting the Best Fit Line - Simulated

plot(y ˜ x, data = xy.df)

abline(y.lm)

abline(-6.332, 9.208, lty=2)
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Dashed line: true line; Solid line: estimated line
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Simulated Linear Regression Data - Nonconstant Variance

residuals <- resid(y.lm)

qqnorm(residuals)

qqline(residuals)
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Residuals: How do They Change with x?

plot(residuals ˜ x , data = xy.df)

abline(h = 0)
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When you see this kind of pattern, you should consider weighted least-squares. It will give improved
estimates of the slope.
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Comparing Weighted Least-Squares with Ordinary Least-Squares

Ordinary (unweighted) Least-Squares Simulation:

Nsims <- 20000; slopes <- sderrors <- numeric(Nsims)

for (i in 1:Nsims) {# 20000 simulated data sets

eps <- rnorm(n, sd=(x-15))

y <- -6.332 + 9.208*x +eps

xy.df <- data.frame(x,y)

y.lm <- lm(y ˜ x, data = xy.df)

slopes[i] <- coef(y.lm)[2]

sderrors[i] <- summary(y.lm)$coefficients[2,2]

}
mean(slopes); sd(slopes)

## [1] 9.206187

## [1] 0.6807442
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Comparing Weighted Least-Squares with Ordinary Least-Squares

Weighted Least-Squares Simulation:

for (i in 1:Nsims) {# 20000 simulated data sets

eps <- rnorm(n, sd=(x-15))

y <- -6.332 + 9.208*x +eps

xy.df <- data.frame(x,y)

y.lm <- lm(y ˜ x, data = xy.df, weights=1/(x-15))

slopes[i] <- coef(y.lm)[2]

sderrors[i] <- summary(y.lm)$coefficients[2,2]

}
mean(slopes); sd(slopes)

## [1] 9.213301

## [1] 0.5004347

The standard error of the slope estimate is less when weighted least-squares is used. So if there is
evidence of a changing variance, you should try to use weights – if you can!
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