
Simulation II

W. John Braun, UBC

COSC 405, DATA 405, COSC 505 and DATA 505

1

Probability and Discrete Random Variable Simulation

Discrete Probability Distributions

Simulation of Discrete Random Variables

Applications: Control Charting, Rain Event Modelling with Poisson
Processes

2

Discrete Probability Distributions

Examples of discrete random variables:

1. The number of major earthquakes in a region.

2. The number of errors in a software program.

3. The number of accidents at a traffic intersection.

4. The proportion of mosquitoes killed at a given dose of insecticide.

5. The number of attempts made at passing a test until the first
success.

3

Discrete Probability Distributions

Characteristics of discrete random variables:

1. Numeric.

2. Finite or countably valued.

3. Each value is associated with a probability.

4

Discrete Probability Distributions

Example: Number of heads H obtained in 2 independent coin tosses:

Possible values of H: 0,1,2.

Corresponding probabilities pH(h) :1/4, 1/2, 1/4.

Probability distribution table: h 0 1 2
pH(h) 1/4 1/2 1/4

5

Discrete Probability Distributions

Probability distributions can be modelled from data:

e.g. For quality purposes, in a refrigerator manufacturing setting, the
number of flaws were counted in the surfaces of a sample of 100
refrigerator doors, yielding the following information:

Number of Flaws 0 1 2 3 4 5 6
Count 35 39 12 13 0 0 1

The sample can be viewed as an estimate for the total population of
refrigerator doors (manufactured by the particular company).

6

Discrete Probability Distributions

We can divide by the sample size to yield an estimate of the probability
distribution for surface flaws F :

f 0 1 2 3 4 5 6
pF (f) 0.35 0.39 0.12 0.13 0 0 0.01

In other words, there is an approximate probability of 0.12 that a
randomly selected refrigerator door has exactly 2 surface flaws.

7

Discrete Probability Distributions

We could create a function in R to return such probabilities:

dFlaws <- function(x) {
return(c(.35, .39, .12, .13, 0, 0, .01)[x+1])

}

e.g. P (F = 3):

dFlaws(3)

[1] 0.13

8

Visualizing a Discrete Distribution

The bar plot is an appropriate vehicle to view discrete distributions:

f <- 0:6; probs <- dFlaws(f); names(probs) <- f

barplot(probs)

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

9

Cumulative Distributions

For a given random variable X, we often need to evaluate P (X ≤ x) or
its complement P (X > x) = 1− P (X ≤ x).

The cumulative distribution function is
F (x) = P (X ≤ x) =

∑x
j P (X = j).

10

Cumulative Distributions

For the surface flaws example, we would estimate the cumulative
distribution function as:

pFlaws <- function(x) {
return(c(.35, .74,.86, .99, .99, .99, 1)[x+1])

}

e.g. P (F > 4)

1 - pFlaws(4)

[1] 0.01

11

Pseudorandom Numbers which follow the Flaw Count Distribution

The following function shows how one might simulate large numbers of
independent variates which follow the distribution of surface flaw counts
obtained above:

rFlaws <- function(n) {
U <- runif(n)

X <- numeric(n)

for (x in 0:6) {
X[U >= pFlaws(x)] <- x + 1

}
return(X)

}

12

Pseudorandom Numbers which follow the Flaw Count Distribution

Examples:

rFlaws(10)

[1] 0 1 0 1 0 0 3 2 0 1

table(rFlaws(100))

##

0 1 2 3

39 37 13 11

13

A Model for the Surface Flaw Distribution

The completely data-driven model and simulator produced earlier
cannot predict counts of 4 or 5. This is not realistic.

Models can provide more realism, at the expense of other kinds of
inaccuracy.

A possible model for the flaw distribution is

p(x) = (1− (x/7)2)8/2.59676876439, for x = 0,1,2, . . . ,6 and 0,
otherwise.

14

A Model for the Surface Flaw Distribution

dFlaw <- function(x) {
(1-(x/7)ˆ2)ˆ8*(x >=0)*(x <= 6)/2.59676876439

}

dFlaw(0:6)

[1] 3.850940e-01 3.265337e-01 1.948490e-01

[4] 7.594130e-02 1.629707e-02 1.275522e-03

[7] 9.452461e-06

The probabilities of 4 and 5 flaws are now small, but nonzero.

The total probability is still

sum(dFlaw(0:6))

[1] 1

15

Simulating from the Distribution Model

rFlaw <- function(n) {
F <- function(f) sum(dFlaw(0:f))

U <- runif(n)

X <- numeric(n)

for (j in 0:5) {
X[U > F(j)] <- j + 1

}
return(X)

}

table(rFlaw(100000))/100000

##

0 1 2 3 4 5

0.38596 0.32592 0.19316 0.07723 0.01635 0.00137

6

0.00001

16

Expected Values

The expected value of a distribution is a single number which provides a
partial summary of the distribution of a random variable X.

It is also known as the mean and denoted as E[X].

The expected value is calculated according to

E[X] =
∞∑
j=0

jdX(j)

where dX(j) = P (X = j).

17

Expected Values

Example: Find the expected value of the data-driven model for the
counts of flaws:

j <- 0:6

sum(dFlaws(j)*j)

[1] 1.08

Note that this matches the average of the data exactly:
(39 + 12(2) + 13(3) + 1(6))/100 = 1.08.

18

Expected Values

Example: Find the expected value of the alternative model for the counts
of flaws:

j <- 0:6

sum(dFlaw(j)*j)

[1] 1.015678

Note that this no longer matches the average of the data but is not far
off.

19

Variance and Standard Deviation

How far is far? The standard deviation can often provide a useful
measure of distance.

Var(X) = E[X2]− (E[X])2.

S =
√

Var(X).

Dividing by the square root of the sample size gives us the standard
error which can be used to assess distance between an average and an
expected value.

20

Variance and Standard Deviation

Example: Find the standard deviation of the alternative model for the
counts of flaws:

j <- 0:6

V <- sum(dFlaw(j)*jˆ2) - (sum(dFlaw(j)*j))ˆ2

SD <- sqrt(V)

SD/sqrt(100) # standard error

[1] 0.1025076

Note that sum(dFlaw(j)*jˆ2) is the implementation of E[X2], where
j2 represents a squared value taken from the distribution of X.

21

Special Discrete Random Variable Models

• Bernoulli

• Binomial

• Geometric

• Poisson

• Negative Binomial

22

Bernoulli Random Variables

A Bernoulli trial is an experiment in which there are only 2 possible
outcomes.

For example, a light bulb may work or not work; these are the only
possibilities.

Each outcome (‘work’ or ‘not work’) has a probability associated with it;
the sum of these two probabilities must be 1.

Other possible outcome pairs are: (living, dying), (success, failure),
(true, false), (0, 1), (-1, 1), (yes, no), (black, white), (go, stop)

 binary data

23

Simulating a Bernoulli Random Variable

We could also think about outcomes that come from simulating a
uniform random variable U on [0,1].

For example, the event that U is less than 0.2 is a possible outcome. It
occurs with probability 0.2. It does not occur with probability 0.8.

Outcome pair: (U < 0.2, U ≥ 0.2)

We can associate the event U < 0.2 with an event that we want to
simulate.

set.seed(88832) # use this to replicate the results below

24

Simulating Guess Outcomes on a Multiple Choice Test

Consider a student who guesses on a multiple choice test question
which has 5 possible answers, of which exactly 1 is correct.

The student may guess correctly with probability 0.2 and incorrectly
with probability 0.8.

We can simulate the correctness of the student on one question with a
U [0,1] random variable. If the outcome is TRUE, the student guessed
correctly; otherwise the student is incorrect.

U <- runif(1) # generate U[0,1] number

U

[1] 0.7125406

U < 0.2 # test U < 0.2 and simulate student's outcome

[1] FALSE

25

Simulating Guess Outcomes on a Multiple Choice Test

The student guesses at another question:

U <- runif(1) # generate U[0,1] number

U

[1] 0.7214004

U < 0.2 # student outcome

[1] FALSE

26

Simulating Guess Outcomes on a Multiple Choice Test

Suppose we would like to know how well such a student would do on a
multiple choice test consisting of 20 questions.

Again, each question corresponds to an independent Bernoulli trial with
probability of success equal to 0.2.

R can do the simulation as follows:
guesses <- runif(20)
correct <- (guesses < 0.2)
correct

[1] TRUE TRUE FALSE TRUE TRUE FALSE FALSE
[8] FALSE FALSE TRUE FALSE FALSE TRUE FALSE
[15] FALSE FALSE FALSE FALSE FALSE FALSE

27

A Quick Way to Calculate a Student’s Score

The total number of correct guesses can be calculated.

table(correct)

correct

FALSE TRUE

14 6

Our simulated student would score 6/20.

28

Explanation

In the preceding example, we could associate the values ‘1’ and ‘0’ with
the outcomes from a Bernoulli trial.

This defines the Bernoulli random variable: a random variable which
takes the value 1 with probability p, and 0 with probability 1− p.

29

Expected Value of a Bernoulli Random Variable X

The expected value of a Bernoulli random variable is p: E[X] = p.

This follows from the fact that X = 1 with probability p and X = 0 with
probability 1− p:

E[X] = 0× P (X = 0)+ 1× P (X = 1) = 1p = p.

30

Variance of a Bernoulli Random Variable X

E[X2] = E[X] since X2 = X

which is true for any variable which can only take on values 0 or 1.

Variance:

Var(X) = E[X2]− (E[X])2 = E[X]− (E[X])2 = p− p2.

Therefore, the theoretical variance of X is p(1− p). (Standard deviation
is
√
p(1− p)).

31

Simulated Student Example

A student would expect to guess correctly on the multiple choice
questions 20% of the time; our simulated student was a little bit lucky,
obtaining a mark of 30%.

32

Binary Data with a Trend

Suppose there are 40 students in the class, and some study and some
do not.

Let s denote the number of hours that a student studies. A possible
model for the probability of answering a question correctly might be

p(s) = .8− .6e−s

which gives the probability of 0.2 for no studying, and a probability of .8
for an unlimited amount of studying (there are other factors besides
studying that influence a student’s performance).

We might model the number of hours of study for each student with a
uniform distribution on [0,4].

33

Binary Data with a Trend

We can simulate such a class using

n <- 40

S <- runif(n, min = 0, max = 4)

S # number of study hours for each student

[1] 3.42819 2.77051 0.00868 3.48061 2.52366

[6] 3.59945 3.19887 3.29401 1.09803 1.70981

[11] 1.80608 1.21620 2.16889 0.15092 1.81191

[16] 3.94547 2.75876 1.96593 0.30341 1.51880

[21] 3.88865 0.37969 2.75121 0.60315 1.79566

[26] 2.35321 3.16678 0.26153 3.67785 1.83443

[31] 3.35034 0.19594 2.81032 1.88879 2.56764

[36] 2.49493 1.15094 2.63753 3.36818 1.30130

34

U <- runif(n)

U < .8 - .6*exp(-S) # results for the first question

[1] FALSE TRUE FALSE TRUE TRUE TRUE FALSE

[8] TRUE TRUE TRUE FALSE TRUE TRUE FALSE

[15] TRUE TRUE TRUE TRUE FALSE FALSE TRUE

[22] TRUE TRUE FALSE FALSE TRUE FALSE FALSE

[29] TRUE TRUE FALSE FALSE TRUE TRUE TRUE

[36] TRUE TRUE TRUE TRUE TRUE

Binary Data with a Trend

Simulating the class performance on a 20 question test:

Ncorrect <- (U < .8 - .6*exp(-S)) # 1st question

for (i in 2:20) {
U <- runif(n)

Ncorrect <- Ncorrect + (U < .8 - .6*exp(-S))

}
table(Ncorrect)

Ncorrect

4 5 6 7 9 10 11 12 13 14 15 16 17 18

1 1 1 1 1 2 3 2 3 4 7 7 5 2

35

Visualizing the Trend

plot(Ncorrect ˜ S, pch = 16, xlab = "Study Time (in hours)",

ylab="Number Correct")

0 1 2 3 4

4
8

12
16

Study Time (in hours)

N
um

be
r

C
or

re
ct

36

Binomial Random Variables

Let X denote the sum of m independent Bernoulli random variables,
each having probability p.

X is called a binomial random variable; it represents the number of
‘successes’ in m Bernoulli trials.

A binomial random variable can take values in the set
{0,1,2, . . . ,m}.

Example: When the student guessed at 20 multiple choice questions,
the number of correct guesses was a binomial random variable X with
m = 20 and p = 0.2.

X ∼ bin(20,0.2).

37

Binomial Random Variables

The probability of a binomial random variable X taking on any one of
these values is governed by the binomial distribution:

P (X = x) =
(
m

x

)
px(1− p)m−x, x = 0,1,2, . . . ,m.

These probabilities can be computed using the dbinom() function.

38

Calculating Binomial Probabilities in R

dbinom(x, size, prob)

Here, size and prob are the binomial parameters m and p, respectively,
while x denotes the number of ‘successes’. The output from this
function is the value of P (X = x).

Example - Guessing on Multiple Choice:

dbinom(6, 20, 0.2) # probability of exactly 6 correct

[1] 0.1091

Our simulated student did something that had an 11% chance of occurring.

39

Example

Compute the probability of getting exactly 4 heads in 6 tosses of a fair
coin.

dbinom(x = 4, size = 6, prob = 0.5)

[1] 0.234375

Thus, P (X = 4) = 0.234, when X is a binomial random variable with
m = 6 and p = 0.5.

40

Binomial Probabilities

Recall the cdf: F (x) = P (X ≤ x).

Cumulative binomial probabilities can be computed using pbinom().

This function takes the same arguments as dbinom().

Example: The probability of a student scoring 6 or less by guessing on a
multiple choice test is

pbinom(6, 20, .2)

[1] 0.913307

41

Binomial Probabilities

The probability of a student scoring 6 or more by guessing on a multiple
choice test is

1 - pbinom(5, 20, .2)

[1] 0.195792

This means that our simulated student is not highly unusual.

Example: The probability of a student scoring 10 or more by guessing on a multiple
choice test is

1 - pbinom(9, 20, .2)

[1] 0.00259483

A student who passes the test purely by guessing would be unusually lucky. This is an
example of a p-value for a test of the hypothesis that the student is guessing. In this
case, we might infer that a student who passes the test is not just guessing.

42

Binomial Pseudorandom Numbers

The rbinom() function can be used to generate binomial pseudorandom
numbers.

rbinom(n, size, prob)

Here, size and prob are the binomial parameters m and p, while n is the
number of variates generated.

Simulating 12 other students’ perfomances after guessing on a multiple
choice test with 20 questions:

rbinom(12, 20, 0.2)

[1] 8 2 4 4 2 5 1 3 5 5 2 6

43

Expected Value of a Binomial Random Variable X

A binomial random variable is the sum of m independent Bernoulli
random variables, each with success probability p:

X =
m∑
j=1

Xj

where Xj is Bernoulli with probability p. Because expected values are
based on summation, it is possible to show that

E[X] =
m∑
j=1

E[Xj].

We can conclude that

E[X] = mp.

44

Expected Values of Products of Random Variables

If X1 and X2 are independent Bernoulli random variables, then

P (X1 = x1, X2 = x2) = P (X1 = x1)P (X2 = x2).

Therefore, E[X1X2] =
∑1
x1=0

∑1
x2=0 x1x2P (X1 = x1, X2 = x2).

Independence allows us to write

E[X1X2] =
1∑

x1=0

1∑
x2=0

x1x2P (X1 = x1)P (X2 = x2).

Reordering the sums:

E[X1X2] =
1∑

x1=0

x1P (X1 = x1)
1∑

x2=0

x2P (X2 = x2) = E[X1]E[X2].

This result holds for all pairs of independent random variables.
45

Expected Values of Products of Sums of Random Variables

If X =
∑m
j=1Xj, then X2 =

∑m
j=1X

2
j +

∑m
j=1

∑m
i=1,i 6=jXiXj.

Therefore, E[X2] =
∑m
j=1E[X2

j] +
∑m
j=1

∑m
i=1,i 6=j E[Xi]E[Xj].

If the Xj’s all have the same distribution, then E[Xj] will be constant
(say, a, and so will E[X2

j (say, b) giving us

E[X2] = ma+m(m− 1)b.

In the case of the independent Bernoulli p random variables,
E[Xj] = E[X2

j] = p, so

E[X2] = mp+m(m− 1)p2.

46

Variances of Sums of Random Variables

The argument on the previous slide can be complete to show that the
variance of a sum of independent random variables is the same as the
sum of the variances of those individual random variables.

In the case where X is a sum of m independent Bernoulli random
variables, we have

Var(X) = E[X2]− (E[X])2 = mp+m2p2 −mp2 −m2p2 = mp(1− p).

The standard deviation is
√
mp(1− p).

47

A Slightly More Realistic Simulation

A student that guesses would represent a kind of worst-case scenario
while a student that gets correct answers every time would represent the
best-case scenario.

We could model a class of 12 different students using a uniform random variable to
represent their probability of answering correctly.

U <- runif(12, min=0.2, max=0.9)
U

[1] 0.343702 0.744337 0.284354 0.537338 0.484097
[6] 0.276168 0.351801 0.420542 0.871380 0.218155
[11] 0.623122 0.275150

Simulating 12 different students’ perfomances after writing a multiple choice test with
20 questions:

rbinom(12, 20, U)

[1] 6 13 5 6 10 7 6 9 19 3 10 7

48

Simulating a Larger Class

We could model a larger class, say of 300 students:

U <- runif(300, min=0.2, max=0.9)

scores <- rbinom(300, 20, U)

hist(scores)

Histogram of scores

scores

F
re

qu
en

cy

0 5 10 15 20

0
10

20
30

40

49

Using Simulation to Visualize a New Distribution

According to the model we have developed, a randomly selected
student’s score S is a binomial random variable, conditional on the
amount of studying and aptitude, summarized by a uniform random
variable on [0.2,1.0].

We can visualize the distribution of the random variable S by simulating
a large number of such variables. The code and plot are on the next
slide.

50

Using Simulation to Visualize a New Distribution

Nsims <- 1000000

U <- runif(Nsims, min=0.2, max=0.9)

scores <- rbinom(Nsims, 20, U)

barplot(table(scores)/Nsims)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
00

0.
02

0.
04

0.
06

51

Example - Control Charting

Suppose 10% of the windshields produced on an assembly line are
defective, and suppose 15 windshields are produced each hour.

Each windshield is independent of all other windshields.

This process is judged to be out of control when more than 4 defective
windshields are produced in any single hour.

Simulate the number of defective windshields produced for each hour
over a 24-hour period, and determine if any process should have been
judged out of control at any point in that simulation run.

52

Control Charting

One such simulation run is:

defectives <- rbinom(24, 15, 0.1)

defectives

[1] 2 3 1 3 0 3 0 1 2 2 3 1 2 0 1 1 1 1 1 1 1 1 1

[24] 0

any(defectives > 4) # any() asks if any of its arguments are TRUE

[1] FALSE

None of the defective counts exceed 4. The process is in control and the simulated
data is in control.

53

Control Charting

Usually, a control chart is drawn:

ts.plot(defectives)

abline(h = c(0, 4), col="red")

Time

de
fe

ct
iv

es

5 10 15 20

0.
0

1.
0

2.
0

3.
0

Nothing plots outside of the control limits (drawn in red).

54

Control Charting

Another simulation. This time the true proportion defective is larger than
0.1 occasionally. Is this out of control condition detected by the control
chart?

defectives <- rbinom(24, 15, 0.1+0.1*rbinom(24, 1, .3))

defectives

[1] 1 2 0 2 4 0 0 3 3 0 1 2 1 0 2 5 0 2 0 2 3 2 2

[24] 3

any(defectives > 4) # any() asks if any of its arguments are TRUE

[1] TRUE

The out of control condition is detected.

55

Visualizing the Result

ts.plot(defectives)

abline(h = c(0, 4), col="red")

Time

de
fe

ct
iv

es

5 10 15 20

0
1

2
3

4
5

56

Simulating geometric random variables

We saw that a binomial random variable is defined as the sum of m
independent Bernoulli random variables.

Now, we will define a geometric random variable as the number of
Bernoulli random variables that must be generated before the first 1
appears.

57

Simulating geometric random variables

Example. Suppose we toss a coin repeatedly and want to count the
number of heads (0) until we toss the first tail.

If we simulate 5 coin tosses, we obtain

p <- 0.5; # probability of a tail

runif(5) < p

[1] TRUE TRUE FALSE TRUE FALSE

The first 2 tosses are heads and the third toss is a tail, so in this
example, the geometric random number would be 2.

The third, fourth and fifth tosses weren’t needed, so we would be better
off using a while() loop here.

58

Simulating geometric random variables

Example.

set.seed(123488) # use this seed to get our result

p <- 0.5; # probability of a tossing a tail

G <- 0 # eventual value of geometric random variable

U <- runif(1) # first coin toss

IsItaTail <- (U <= p) # this will be TRUE when we toss a tail

while (IsItaTail == FALSE) {
G <- G + 1 # add one to G until IsItaTail is TRUE

U <- runif(1)

IsItaTail <- (U <= p)

}
G

[1] 1

59

Simulating geometric random variables

Example. This time simulate the number of independent die rolls until
rolling a 6.

p <- 1/6; # probability of a rolling a 6

G <- 0 # eventual value of geometric random variable

U <- runif(1) # first die roll

IsIt6 <- (U < p) # TRUE if we roll a 6

while (IsIt6 == FALSE) {
G <- G + 1 # add one to G until IsIt6 is TRUE

U <- runif(1)

IsIt6 <- (U < p)

}
G

[1] 12

60

Simulating geometric random variables

Example. This time simulate the number of independent 2-dice rolls until
rolling a 12.

p <- 1/6; # probability of a rolling a 6

U <- runif(2) # first 2 dice rolls

G <- 0 # eventual value of geometric random variable

IsIt12 <- (U[1]<1/6)&(U[2]<1/6) # TRUE if both dice are 6's

while (IsIt12 == FALSE) {
G <- G + 1 # add one to G until both dice are 6's

U <- runif(2)

IsIt12 <- (U[1]<1/6)&(U[2]<1/6) #

}
G

[1] 4

61

Simulating geometric random variables

We can also use the rgeom() function to simulate these numbers. For
example, to simulate the number of die rolls until the first 6, use

G <- rgeom(1, p = 1/6)

G

[1] 3

To simulate the number of 2-dice rolls until the first 12 (an event with
probability 1/36), use

G <- rgeom(1, p = 1/36)

G

[1] 65

62

Simulating geometric random variables

Let’s look at the distribution of a geometric random variable where
p = 1/2 by simulating 500 values and tabulating the result:

N <- 500;

G <- rgeom(N, p = 1/2)

table(G)

G

0 1 2 3 4 5 6 7 9

252 134 53 32 13 9 3 3 1

63

Simulating geometric random variables

The bar plot is

barplot(table(G))

0 1 2 3 4 5 6 7 9

0
50

15
0

25
0

From the plot, we see that the probability of a 0 is higher than for a 1
which is a higher than for a 2 and so on.

64

Calculating geometric probabilities

The probability of a geometric random variable X taking on any value
can be computed using the dgeom() function.

dgeom(x, prob) Here, prob is the parameter p, while x denotes the
number of trials before the first ‘success’. The output from this function
is the value of P (X = x).

65

Example

Compute the probability that it will take 5 die rolls before obtaining the
first 6.

dgeom(x = 5, prob = 1/6)

[1] 0.0669796

Thus, P (X = 5) = 0.067, when X is a geometric random variable with
p = 1

6.

66

Example

Compute the probability that it will take 5 or fewer die rolls before
obtaining the first 6. (Use the pgeom() function for this.)

pgeom(5, prob = 1/6)

[1] 0.665102

Thus, P (X ≤ 5) = 0.6651, when X is a geometric random variable with
p = 1

6.

67

The probability of a 100-year disaster

The geometric distribution is the simplest of all models that can be used
to predict the occurrence of a disaster, such as a flood.

If the probability of a disaster in a given year is .01, how long would we
expect to wait for the event?

If we simulate a large number of geometric random variables with
p = .01, we can visual the distribution of the waiting time:

W <- rgeom(500, p = .01)

mean(W) # this gives us the average waiting time

[1] 97

This is what is meant by a 100-year event.

68

The probability of a 100-year disaster

But note that the 100-year event could happen pretty soon:

hist(W)

Histogram of W

W

F
re

qu
en

cy

0 100 200 300 400 500

0
50

10
0

The probability of the event occurring within the next 25 years is

pgeom(25, p = .01)

[1] 0.229957

69

The probability of a 100-year disaster

Example.

Using the binomial distribution, calculate the probability that 2 such
disasters could occur in the same 100 year period.

The probability of 1 or fewer disasters in 100 years is

pbinom(1, 100, p=.01)

[1] 0.735762

so we can subtract this from 1 to get the required probability:

1-pbinom(1, 100, p=.01)

[1] 0.264238

70

The Expected Value of a Geometric Random Variable

For the geometric random variable X with P (X = j) = p(1− p)j, for
j = 1,2, . . ., it can be shown using arguments involving geometric
series, that

E[X] =
1− p
p

.

Note that if the variable is defined so that P (X = j) = p(1− p)j−1, then

E[X] =
1

p
.

71

Poisson Random Variables

The Poisson distribution is the limit of a sequence of binomial
distributions with parameters n and pn, where n is increasing to infinity,
and pn is decreasing to 0, but where the expected value (or mean) npn
converges to a constant λ.

The variance npn(1− pn) converges to this same constant.

Thus, the mean and variance of a Poisson random variable are both
equal to λ.

This parameter is sometimes referred to as a rate.

72

Applications of Poisson Random Variables

Poisson random variables arise in a number of different ways.

They are often used as a crude model for count data.

Examples of count data are the numbers of earthquakes in a region in a
given year, or the number of individuals who arrive at a bank teller in a
given hour.

The limit comes from dividing the time period into n independent
intervals, on which the count is either 0 or 1.

The Poisson random variable is the total count.

73

Distribution of Poisson Random Variables

The possible values that a Poisson random variable X could take are the
non-negative integers {0,1,2, . . .}.

The probability of taking on any of these values is

P (X = x) =
e−λλx

x!
, x = 0,1,2,

74

Calculation of Poisson Probabilities

The Poisson probabilities can be evaluated using the dpois() function.

dpois(x, lambda)

Here, lambda is the Poisson rate parameter, while x is the number of
Poisson events. The output from the function is the value of P (X = x).

75

Example

The average number of arrivals per minute at an automatic bank teller is
0.5. Arrivals follow a Poisson process. (Described later.)

The probability of 3 arrivals in the next minute is

dpois(x = 3, lambda = 0.5)

[1] 0.0126361

Therefore, P (X = 3) = 0.0126, if X is Poisson random variable with
mean 0.5.

76

Poisson Probabilities

Cumulative probabilities of the form P (X ≤ x) can be calculated using
ppois().

Example: Find the probability that a Poisson random X with mean 3 (or
rate 3) is less than or equal to 2:

ppois(2, 3)

[1] 0.42319

Find the probability that such a random variable is larger than 6:

1 - ppois(6, 3)

[1] 0.0335085

77

Poisson Pseudorandom Numbers

The following function shows how one might simulate large numbers of
independent Poisson variates:

rPois <- function(n, lambda) {
U <- runif(n)

X <- numeric(n)

x <- 0

while (max(U) > ppois(x, lambda)) {
X[U >= ppois(x, lambda)] <- x + 1

x <- x+1

}
return(X)

}

78

Poisson Pseudorandom Numbers

Example:

n <- 100000; rate <- 3

X <- rPois(n, rate)

X[1:5] # the first 5 variates

[1] 1 3 4 2 5

79

Poisson Pseudorandom Numbers

Tabular summary of the Poisson counts:

table(X)

X

0 1 2 3 4 5 6 7

5007 14946 22474 22335 16755 10140 4962 2135

8 9 10 11 12 13

887 243 82 26 7 1

80

Poisson Pseudorandom Numbers

Comparison of the simulated probabilities with theoretical probabilities:

table(X)/n - dpois(0:max(X), rate)

X

0 1 2

2.82932e-04 9.87949e-05 6.98192e-04

3 4 5

-6.91808e-04 -4.81356e-04 5.81187e-04

6 7 8

-7.89407e-04 -2.54031e-04 7.68488e-04

9 10 11

-2.70504e-04 9.84882e-06 3.90497e-05

12 13

1.47624e-05 -2.74713e-06

81

Poisson Pseudorandom Numbers

We can also generate Poisson random numbers using the rpois()
function.

rpois(n, lambda)

The parameter n is the number of variates produced, and lambda is as
above.

82

Rain Events - Poisson Distribution Example

Suppose rain events occur in a particular area, daily, between May 1 and
Sept 15, according to a Poisson distribution with rate 0.6 per day.

Simulate the numbers N of daily rain events for this 138 period,
assuming independence from day to day.

N <- rpois(138, 0.6)

Calculate the mean and variance of N .

mean(N)

[1] 0.630435

var(N)

[1] 0.526658

83

Rain Events - Poisson Distribution Example

barplot(table(N))

0 1 2 3

0
10

30
50

70

84

Negative Binomial Model

In fact, the observed average number of daily rain events in the region
0.45 and the variance is 0.73.

This means the Poisson distribution is not really appropriate as a model
for this data. The mean and variance should match.

The data are over-dispersed. The variance is larger than the mean.

One model for over-dispersed data is the negative binomial model.

85

Negative Binomial Model

A negative binomial random variable counts up the number of Bernoulli
(p) trials until the rth success occurs.

If X is a negative binomial random variable, then

E[X] = r(1− p)/p

and

Var(X) = r(1− p)/p2

The first result can be obtained by noting that X is the sum of r
geometric random variables. The second follows, except that the
independence of the geometric random variables is also needed.

86

Negative Binomial Probabilities

dnbinom(x, size, prob)

Here, size and prob are the parameters r and p, respectively, while x

denotes the number of observed trials until the rth ‘success’. The
output from this function is the value of P (X = x).

Example - The probability that it takes 6 trials before a student guesses
2 multiple choice questions correctly is

dnbinom(6, 2, 0.2) # probability that 6 guesses are required

[1] 0.0734003

87

Negative Binomial Pseudorandom Numbers

We can generate negative binomial random numbers using the
rnbinom() function.

rnbinom(n, size, prob)

The parameter n is the number of variates produced, and size is r and
prob is p as above.

Note that r does not have to be an integer. The model is more general
than the interpretation given on the previous slide suggests.

88

Rain Events - Negative Binomial Example

Suppose rain events occur in a particular area, daily, between May 1 and
Sept 15, according to a Negative binomial distribution with r = 0.52 and
p = 0.57 (these parameters would be estimated from real data).

Simulate the numbers N of daily rain events for this 138 period,
assuming independence from day to day.

N <- rnbinom(138, 0.52, 0.57)

Calculate the mean and variance of N .

mean(N)

[1] 0.369565

var(N)

[1] 0.731038

89

Rain Events - Negative Binomial Example

barplot(table(N))

0 1 2 3 4 5

0
20

40
60

80
10

0

90

Summary

We can generate the building blocks for discrete simulation using
uniform random numbers.

Bernoulli random variables can be generated from uniforms.

Binomial random variables are sums of independent Bernoullis and are
a basic model for counting defectives.

Poisson random variables are a basic model for counting defects.

Negative binomial variables are sometimes useful as a more accurate
model than the Poisson. (Geometric random variables are a special
case.)

91

Exercises

1. Crates containing a large number of batteries are monitored by
randomly selecting 20 from each crate and running an accelerated
life test. If 2.5 percent of the batteries are defective under normal
conditions, identify a model for the number of defective batteries in
a given sample.

2. Identify an appropriate alternative model for the refrigerator surface
flaw data.

92

