Simulation |

W. John Braun, UBC

COSC/DATA 405/505




Outline

-t ok
- O

OO NOOR WM

Introduction - nonlinearity and predictability

Desirable properties of generators

Multiplicative congruential generators and cycling

Seed issues - an illustrative example

Basic checks: histogram and autocorrelation function
Shuffling

Statistical testing, the spectral test and a random forest test
Linear congruential generators and cycling

Combination generators

It’s “high time”

. Accessing better generators in R




Introduction

1. Random and pseudorandom numbers

2. Predictable and unpredictable numbers



Nonlinearity can sometimes lead to less predictable sequences

To obtain less predictable sequences, we will require a function that will
variously lead to an increase or a decrease.

Only nonlinear functions have such a property. Not all do.

An example of a nonlinear function is the cosine function. We start with
xog = 2 and generate 12 successive values from

Tn = 7 COS(Typ_1).

X <— 2; prnumbers <- numeric(l2)
for (n in 1:12) {
X <— pl*cos (X)

prnumbers[n] <- X



Nonlinearity - Example

prnumbers

## [1] —-1.3073638 0.8180586 2.1477164 -1.7135662
## [5] —-0.4470026 2.8329212 -2.9931147 -3.1070269
## [9] —-3.1397161 —-3.1415871 -3.1415927 —-3.1415927

The first few numbers produced by this function seem to be
unpredictable, but eventually this mapping converges to a single
number.

The convergence in this example occurs because the mapping
x = 7 cos(x) has a stable fixed point at x = —.

This fixed point is stable, meaning that if x,,_ is larger than the fixed
point, then x,, = 7 cos(x,,_1) will be smaller than »,,_,and if z,,_q is
smaller than the fixed point, then z,, will be larger than x,,_ 1, and in both
cases, =, Will be closer to the fixed point than z,,_; was.



Nonlinearity - Example

The stability of a fixed point is related to the slope of the curve f(x) ina
neighbourhood around the fixed point; if the slope is less than 1 in
absolute value, the point is stable.

curve (pixcos (x), —-4, 4)
abline (0, 1)

pi * cos(x)




Nonlinearity - Example

A mapping for a pseudorandom number generator should not have a
stable fixed point.

We can increase the frequency of the waveform described by the cosine
function increasing the humber of possible fixed points in the interval
[—1, 1] while also assuring that they are not stable.

This mapping is plotted on the next slide, together with the function
f(x) = x overlaid, so we can see a large number of fixed points.



Nonlinearity - Example

curve (cos (30xx), -1, 1)
abline (0, 1)

00 05 10

cos(30 * x)

1.0

-1.0 -0.5 0.0 0.5 1.0

Note that the slopes near fixed points (points of intersection between the
overlaid line and the curve) are also relatively large, inducing instability.



Nonlinearity - Example

lllustration:

Start with o = 2 and generate 40 successive values from

xn = Cc0S(30x,,_1).

0.0 05 1.0

prnumbers

1.0

Time

The numbers produced by this function are certainly less predictable
than before, as can be seen in the trace plot above.



Nonlinearity

Functions with jumps can also provide mappings which are very
unpredictable.

Example: consider the function f(z) = 32678x mod 33271:

modfun(x)
25000
l
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Nonlinearity - Example

lllustration:

Start with 7 = 2 and generate 40 successive values from

rn = 32678x,,_1 mod 33271.

25000
I

prnumbers

10000
I

0

Time
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Desirable properties of a pseudorandom number generator

e Speed

e Statistical accuracy

e Long cycle length

o Efficient use of processor

e Portability

e Reproducibility

e Security; robust against attacks

12



Multiplicative Congruential Random Number Generators

The earliest pseudorandom number generators considered were of the
form”

a x,_1 modm

S
3
|

Un = xn/m.

m IS a large integer, and a is another integer which is smaller than m. a
and m are usually relatively prime.

To begin, an integer x( is chosen between 1 and m.

xq Is called the seed.

*Linear congruential generators are similar: x,,+1 = (ax, + ¢) mod m for a positive integer c.
13



Example

Take m = 7 and a = 3. Also, take xg = 2. Then

r1=3x2mod7 =6,
ro =3 x6mod7 =4,
r3 =3 x4mod7 =5,
rga=3x5mod7 =1,
rs =3 x1mod7 =3,
re =3 x3mod7 =2,

u1 = 0.857
uo> = 0.571
uz = 0.714
ug = 0.143
uy — 0.429

ug = 0.286
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Cycling

It should be clear that the iteration will set z7 = x1 and cycle x; through
the same sequence of integers, so the corresponding sequence u; will
also be cyclic.

An observer might not easily be able to predict u, from w1, but since
u;+¢ = u; for all > O, longer sequences are very easy to predict.
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Cycling

In order to produce an unpredictable sequence, it is desirable to have a
very large cycle length so that it is unlikely that any observer will ever
see a whole cycle.

The maximal cycle length is m, so m would normally be taken to be very
large.

16



Caution

Care must be taken in the choice of a and m to ensure that the cycle
length is actually m.

Note, for example, what happens when ¢ = 171 and m = 29241. Start
with o = 3, say.

r1 =171 x 3 =513

2o = 171 x 513 mod 29241 = 0

All remaining z,,’s will be 0.

17



Choosing a and m

To avoid this kind of problem, we should choose m so that it is not
divisible by «a; thus, prime values of m will be preferred.

The next example gives a generator with somewhat better behaviour.
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Example

The code below produces 30268 pseudorandom numbers based on the
multiplicative congruential generator:

xn = 171 z,,_1 mod 30269

with initial seed xg = 27218.
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Example

random.number <- numeric (30268)

random.seed <— 27218
for (7 in 1:30268) {
random.seed <— (171 * random.seed) %% 30269

random.number[j] <- random.seed/30269

The results, stored in the vector random.number, are in the range
between 0 and 1. These are the pseudorandom numbers,

U, uU2,...,U30268-

20



Output

random.number[1:50]
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. 714857
.217946
.987743
.330536




Output

length (unique (random.number) )

## [1] 30268

The last calculation shows that this generator did not cycle before all
possible numbers were computed.
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A Multiplicative Congruential Generator Function

The following function will produce n simulated random numbers on the
interval [0, 1], using a multiplicative congruential generator:

rng <—- function(n, a=171, m=30269, seed=1) {
X <— numeric (min (m—-1,n))
x[1l] <- seed
for (i in l:min(m-1,n)){
y <- x[1]

x[i+1] <= (a*y)%%m
}
x[2:(n+l)]/m
}
rng(5)

## [1] 0.0056493 0.9660379 0.1924741 0.9130794 0.1365754
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Are the simulated nhumbers adequate for the problem at hand?

Generally, simpler problems will make fewer demands on the quality of
the numbers generated, while complex problems such as those arising
in theoretical physics or genomics may be too demanding for even the
best of the currently available generators.

Choice of seed turns out to be surprisingly critical.

Consider the generator based on

Tn = Tx,_1 Mod 17.

Using o = 1, we obtain the following values in the sequence before it
begins to cycle:

##+ [1] 7 15 3 4 11 9 12 16 10 2 14 13 6 8 5 1

(Warning! This is not a generator that should be seriouly considered in
practice.)
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Tossing two fair coins

We will use the rule that a ‘Head’ (H) is generated whenever the
generated value is less than 9, and otherwise a ‘Tail’ (T) is generated.

Thus, we could use the above sequence to generate the following
pattern of heads and tails:

## [l] "H" "T" "H" "H" "T" "T" "T" "T" "T" "H" "T" "T"
## [13] "H" "H" "H" "H"

We only require a single consecutive pair of coin tosses, not the entire
sequence.

Thus, if we request only 2 values from the generator and seed it with the
value 1, we get an H-T outcome, while if we seed with the value 7, we get
a T-H outcome, and so on.
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Tossing two fair coins

Seeds and resulting outcomes (pairs of coin tosses):

##+ [1]1] 7 15 3 4 11 9 12 16 10 2 14 13 6 8 5 1

## [1] "H T" "T H" "H H" "H T" "T T" "T T" "T T" "T T"
## [9] "'I‘ H" "H T" "'I‘ ’I‘" "'I‘ H" "H H" "H H" "H H" "H H"

The frequency distribution for the outcomes is:

i
## HHHTTHTT

ik S 3 3 5

If one chooses the seed randomly from the set {1,2,...,16}, a pair of
heads will occur with probability 5/16 as is the case for a pair of tails.
Thus, the generator will give a biased result for this simple problem.
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Obtaining the correct solution by restricting the choice of seed

Notice that if one seeds the generator with one of {4,11,9,12,2},aT-T
pair will result, while seeding with one of {13,6,8,5, 15} will yield an
H-H outcome.

Removing seeds at the extremes (i.e. either too large or too small) is a
simple general strategy that often leads to improved performance. Thus,
we could disqualify seeds 2, 4, 13 and 15.

Choosing any other seed will result in a pair of coin toss outcomes that
exactly follows the required probability distribution.
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Tossing three fair coins

## [1] HH ’I‘ H" "T H H" "H H T" HH T 'I‘" "T T T" "T T T"
## [7] "T T TH HT T H" "T H T" "H T T" "T T H" "T H H"
## [13] "H H H" "H H H" "H H H" "H H T"

Frequency distribution of outcomes:

it i
## HHHHHTHTHHTTTHHTHTTTHTTT
i 3 2 1 2 2 1 2 3

Equally likely outcomes are assured if only one occurrence of each
outcome is allowed. Restricting the possible seeds to the set
1,3,6,7,9,12,15, 16} will perfectly produce a set of three independent
coin tosses.

There is no way to produce a sequence of four independent coin tosses.
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Starting Seeds - What to do in practice

If the goal is to make an unpredictable sequence, then a random value is
desirable.

For example, the computer might determine the current time of day to
the nearest millisecond, then base the starting seed on the number of
milliseconds past the start of the minute.

To avoid predictability, this external randomization should only be done
once, after which the formula above should be used for updates.

29



Starting Seeds

The second strategy for choosing x( is to use a fixed, nhon-random
value, e.g. g = 1.

This makes the sequence of u; values predictable and repeatable.

This would be useful when debugging a program that uses random
numbers, or in other situations where repeatability is heeded.

The way to do this in R is to use the set.seed () function.

30



Example

set.seed (32789) # this ensures that your
# output will match ours

runif (5)

## [1] 0.35752 0.35376 0.26723 0.99693 0.13174
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Basic checks - Histogram

The distribution of numbers should be uniform on the interval [0, 1].

Example:

x1l <= rng (1000, a = 32377, m = 32378)

x2 <— rng (1000, a = 41, m = 2000)

X3 <= runif (1000)

par (mfrow=c (1, 3)); hist (x1l); hist (x2); hist (x3)

Histogram of x1 Histogram of x2 Histogram of x3

500
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|
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x1 x2 x3

x1 fails; x2 and x3 both appear to be uniform.
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Basic checks - autocorrelation

The autocorrelation function, ACF, numerically summarizes what can be
observed graphically on a lag plot:

lag.plot (x2, lag=6)
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Atlags 1, 2, 3, 4 and 6, it would be hard to predict the current value of x2, but the lag 5
plot shows that the current value of x2 depends a lot on the value 5 time units earlier.
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Basic checks - autocorrelation

The autocorrelations for the first 5 lags are:

acf (x2) Sacf[2:6]

Series x2
o
S
LL ]
S O |
< LO ——————————————————————————————————— - I —————————————————————— |——
@ T | | | | |
0 5 10 15 20 25 30
Lag

## [1] -0.0328 0.0049 -0.1090 -0.1097 0.4575

Note the size of the 5th one. This says that every 5th value of the sequence is
dependent.
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Basic checks - autocorrelation

The autocorrelations for the first 5 lags for values coming from runif ()
are:

acf (x3) Sacf[2:6]

Series x3

o —
L o _|
O ]

< O - e e e e e

© =TT I . I I I

0 5 10 15 20 25 30

Lag

## [1] -0.0131 0.0434 -0.0137 -0.0185 -0.0155

All ACF values checked are small. This sequence passes this test.
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Basic checks - autocorrelation

Note that a severe deficiency of checking the autocorrelations is that
they only detect linear forms of dependence and can miss nonlinear
dependencies.

Thus, they really only serve as a quick way to check many lags at once;
the lag plots have the advantage of highlighting nonlinear
dependencies, if they are there.

Both methods will fail to show more complex dependence structures,

where, for example, values can be predicted nonlinearly by a
combination of earlier values in the sequence.
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Shuffling

Analogous to shuffling a deck of cards, there is a shuffling technique for
reducing sequential dependence in a given sequence of pseudorandom
numbers, x.

The shuffling algorithm uses an auxiliary table v(1),v(2),...,v(k),
where k is some number chosen arbitrarily, usually in the neighborhood
of 100. Initially, the v vector is filled with the first k& values of the =
sequence and an auxiliary variable y is set equal to the (k£ 4+ 1)st value.

37



Shuffling

The steps are:

Extract the index ; . Set j < ky/m, where m is the modulus used in the
sequence z; that is, j is a random value, O < 5 < k, determined by y.

Exchange. Set y < v[j], return y, and set v[;] to the next member of the
sequence .
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Shuffling

The following is an R implementation of shuffling, using the built-in
generator to generate the auxiliary sequence.

shuffle <- function(n, k = 100, x = runif(n)) {
v <— x[1:k]
y <— x[k+1]
xnew <-— numeric(n - k)
i <=1

while (n > k) {
J <— floor (kx*y)+1
y <= vI[J]
xnew[1] <— vy
i <—-1 + 1
v[j] <= x[k+1]
x[k+1l] <- x[n]
n <- n-1
}

c (v, xXnew)
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Shuffling - Example

Shuffling a deck of 52 playing cards.

We first define a vector containing the 52 different playing cards, using a
factor called cards with 52 levels:

a <— 1:52

sulits <- c¢("Spades", "Hearts", "Diamonds", "Clubs")
values <- ¢(2:10, "Jg", "Q", "K", "A")

cards <- factor (a)

levels (cards) <- as.vector (outer (values, suits, paste))
cards

## [1] 2 Spades 3 Spades 4 Spades 5 Spades
## [5] 6 Spades 7 Spades 8 Spades 9 Spades
## [9] 10 Spades J Spades Q Spades K Spades
## [13] A Spades 2 Hearts 3 Hearts 4 Hearts
## [17] 5 Hearts 6 Hearts 7 Hearts 8 Hearts
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Shuffling

We can shuffle the cards using our shuffle () function:

a <- as.numeric (cards) /53
par (mfrow=ec (3, 3) )
for (i in 1:9) {

ts.plot (a)

a <— shuffle (52, 10, a)
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Shuffling - Autocorrelations

Next, we can ask how many times we should shuffle to obtain a
reasonably random ordering of the cards:

a <- as.numeric (cards) /53
par (mfrow=ec (3, 3) )
for (i in 1:9) {

acf (a)

a <— shuffle (52, 10, a)
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autocorrelations appear to die down after the numbers have been

shuffled 6 or 7 times.



Shuffling - Cross-correlations

The cross-correlation between an n-vector x and another n-vector y, at
lag m essentially measures the correlation between (z1,25,...,2n—m)

and (ym, Ym+1,--->Yn)-

We can use the cross-correlation function to see how much dependence
occurs between “hands”.

b <- a

par (mfrow=ec (3, 3) )

for (i in 1:9) {

a <— shuffle (52, 10, a)
ccf (a, Db)
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“Random numbers fall mainly on the planes” (Marsaglia, 1968)

The RANDU pseudorandom number generator is a multiplicative
congruential generator with « = 65539 and m = 231,

Scatterplots of consecutive triples of points:
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All linear congruential generators have more or less severe forms of this
property.
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Testing generators

e Diehard battery of tests

e BigCrush

e TestUO1

These are all collections of mainly statistical tests. One exception is the
spectral test which examines the minimal distance between hyperplanes
in successive dimensions (RANDU does poorly on this test in 3
dimensions.)
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Random forest testing of a pseudorandom number generator

The randomForest function in the randomForest package (Liaw and
Wiener, 2002) can be used to set up a quick and simple approximation to
the spectral test.

The essential idea behind this test is to set up a flexible prediction
model for successive elements of a sequence generated by a
pseudorandom number generator, given m previous values.

If the predictions are consistently inaccurate, the generator can be

judged adequate; when the predictive model is sometimes successful,
the generator should be judged a failure.
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Random forest testing of a pseudorandom number generator

The randomForest function in the randomForest package (Liaw and
Wiener, 2002) can be used to set up a quick and simple approximation to
the spectral test.

The essential idea behind this test is to set up a flexible prediction
model for successive elements of a sequence generated by a
pseudorandom number generator, given m previous values.

If the predictions are consistently inaccurate, the generator can be

judged adequate; when the predictive model is sometimes successful,
the generator should be judged a failure.
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Random forest

A quick digression into the nature of regression trees and their
extension as random forests is necessary before we describe an
implementation of the random forest testing approach for
pseudorandom numbers.
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Regression trees

A regression tree is a flexible or nonparametric approach to predictive
modelling which is particularly useful when there are a relatively large
number of possible predictors and where the nature of the relationship
between the response and the predictors is very much unknown and not
likely linear.

The rpart package (Therneau and Atkinson, 2018) implements a
recursive partitioning technique which can produce both classification

trees and regression trees.

A classification tree is useful in the case where the response variable is
categorical, for example, binary.

Classification trees offer a flexible alternative to logistic regression.

Regression trees offer a flexible alternative to multiple regression.
49



Example

Consider the data in table.b3 of the MPV package.

This data set concerns gas mileage, y, for a number of cars, together
with information on 11 other variables.

In particular, we note that x10 represents weight and x2 represents
horsepower.

We can fit the default regression tree to these data using

library (rpart); library (MPV)
mpg.tree <- rpart(y -~ ., data = table.b3)
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Example

plot (mpg.tree)
text (mpg.tree)

x10>72678
|

x2>3144

29.8
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Regression trees

The tree indicates how the partitioning or splitting of the predictor space
was undertaken.

For weights (x10) less than 2678 pounds, the gas mileage was predicted
to be 29.76 miles per gallon.

This split would have been chosen to minimize the prediction error.

Then an additional split was made, for the data set where weights which
are at least 2678 pounds.

In this case, when the horsepower (x2) is less than 144, the gas mileage
Is predicted to be 20.3, and the prediction is 15.72 when the horsepower
is at least 144.
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Regression trees

Again, this part of the predictor space was partitioned in order to
minimize prediction error.

The splitting process was terminated, based on a trade-off between
predictive precision and model complexity.

Models that have too many splits or branches tend to over-fit the data.
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Random forests

As the name implies, a random forest is a random collection of trees.

The trees are essentially constructed from random samples, taken with
replacement, from the original sample of observations.

This is an example of a technique called bootstrapping.

By averaging the predictions over the entire set of trees, improved
stability can often be achieved.
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Example

We can apply the random forest approach to the car gas mileage data as
follows:

library (randomForest)
mpg.rf <- randomForest (y -~ ., data = table.b3[,-4])

The plots on the next slide are of the actual gas mileages against
predictions for both the random forest predictions and the tree
predictions.

Whether the random forest predictions are better is not necessarily
clear.

What is clear is that the predictions are somewhat finer grained and
somewhat more flexible.
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Example

par (mfrow=c (1, 2))

plot (table.b3Sy - predict (mpg.rf), ylab="Actual mpg",
xlab="Predicted mpg")

plot (table.b3Sy ~ predict (mpg.tree), ylab="Actual.mpg",
xlab ="Predicted mpg")
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Testing pseudorandom numbers with random forest prediction

The function below can be used to carry out the test for a given
pseudorandom number sequence, coming from the generator to be
tested.

Typically, as in the spectral test, one supplies a sequence of m values
which represent the dimensionality of the space to be “filled” by the
successive m-tuples of sequence values.

The function constructs the m vectors as in the RANDU example, and
the random forest is then used to set up a predictive model for values of

Ln+ms given Ln+m—1>Ln+m—25--->Tn-

The fitting is actual done on one-half of the data, the so-called training
set.

The remaining half of the data, the so-called test set, is plugged into the
fitted model to obtain predictions.
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Testing pseudorandom numbers with random forest prediction

The actual values of x,,  ,,, are plotted against the predictions, first using
the training set — internal validation and then using the test set —
external validation.

In both cases, a scatter plot of the actual values against the predicted
values is obtained, with a least-squares line overlaid.

A line with positive slope, particularly on the second plot, is an indicator
of failure for the generator.

One would not expect a line with a substantial negative slope, since the
poor predictivity from the random forest should only yield random
predictions and not predictions that are negatively correlated with the
actual values.

Thus, a line with non-positive slope should be interpreted as a success
for the generator.
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Testing pseudorandom numbers with random forest prediction

rftest <- funection(u, m=5) {
n <- length (u)-1
A <- diag(rep(l,n))
A <- rbind(rep (0, n), A)
A <- cbind (A, rep(0, n+l))
Xy <— matrix(u, nrow=n+l)
for (j in 1:m) {
xy <— cbind(xy, A%$*3xyl[, J])
}
xy <- data.frame (xy)
names (xy) <- c("y", paste("x", 1l:m, sep=""))
Xy <— xy[—(1l:m), ]
xytrain <- xy[l:(n/2),]
xytest <- xy[-(1l:(n/2)),]
xy.rf <- randomForest(y ~ ., data = xytrain)
par (mfrow=ec (1, 2))
plot (predict (xy.rf), xytrainS$Sy, cex=.3,
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xlab="predicted values", ylab="observed values",

main = "training data")
abline (Im(xytrain$y “predict (xy.rf)))

require (randomForest)

plot (predict (xy.rf, newdata=xytest), xytestSy, cex=.3,
xlab="predicted values", ylab="observed values",
main="test data")

abline (Im(xytestSy ~ predict (xy.rf, newdata=xytest)))



Example

We start with the cosine sequence discussed earlier to show why such a
generator is not in practical use.

for (n in 1:500) {
X <— cos (30%xx)

prnumbers[n] <—- X
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Example

rftest (prnumbers)

training data
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Example

Observe that in both plots, the least-squares line has a substantial
positive slope.

The random forest model is making excellent predictions of x,, | 5 based
on the previous 5 observations.

This cosine mapping would not be useful in producing good
approximations to random numbers.

In practice, we should use as large a sample as is practical, and we
should look for trouble over a sequence of m values, starting with 1.

In the case of the spectral test, one does not normally go beyond 8
dimensions, but the random forest approximation can be run at higher
dimensions without much difficulty.
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Testing pseudorandom numbers with random forest prediction

The function MPV: : rftest () can be used to carry out the test for a
given pseudorandom number sequence, coming from the generator to
be tested.

Typically, as in the spectral test, one supplies a sequence of m values
which represent the dimensionality of the space to be “filled” by the
successive m-tuples of sequence values.

The function constructs the m vectors as in the cosine example, and the
random forest is then used to set up a predictive model for values of

Ln+ms given Ln+m—1>Ln+m—25--->Tn-

The fitting is actual done on one-half of the data, the so-called training
set.

The remaining half of the data, the so-called test set, is plugged into the
fitted model to obtain predictions.
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Testing pseudorandom numbers with random forest prediction

The actual values of x,,  ,,, are plotted against the predictions, first using
the training set — internal validation and then using the test set —
external validation.

In both cases, a scatter plot of the actual values against the predicted
values is obtained, with a least-squares line overlaid.

A line with positive slope, particularly on the second plot, is an indicator
of failure for the generator.
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Example - testing the default R generator

We will check the quality of the default generator in R, using the random
forest test, using » = 5000, and m = 1,2,...,10:

u <— runif (5000)
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Random forest test for the default generator in R, using m =1

rftest (u, m = 1)

training data test data
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Random forest test for the default generator in R, using m = 2

rftest (u, m = 2)

training data test data
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Random forest test for the default generator in R,

using m = 3

aplace of mind

UBC
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rftest (u, m = 3)

observed values

training data

predicted values

observed values

test data

predicted values

68



Random forest test for the default generator in R, using m = 4

rftest (u, m = 4)

training data test data
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Random forest test for the default generator in R, using m = 5

rftest (u, m = 5H)

training data test data
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Random forest test for the default generator in R, using m = 6

rftest (u, m = 6)

training data test data
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Random forest test for the default generator in R, using m =7

rftest (u, m = 7)

training data test data
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Random forest test for the default generator in R, using m = 8

rftest (u, m = 8)

training data test data
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Random forest test for the default generator in R, using m = 9

rftest (u, m = 9)

training data test data
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Random forest test for the default generator in R, using m = 10

rftest (u, m = 10)

training data test data
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Applying the random forest test with m = 2 to RANDU

Since the issue for RANDU occurs when m = 2, we will apply the
random forest test using this value of m.

training data test data

observed values
observed values

predicted values predicted values

This result is consistent with the earlier analysis that indicates that the
RANDU generator will not produce good unpredictable numbers.
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Types of generators

6.

. Congruential (multiplicative, linear; recursive) generators

. Multiple-recursive generators (these use «,,_1,x,,_2,..., 2,1 tO

generate x,,)

. Modulo 2 (£, XOR) linear generators (hnumbers are produced

bitwise)

. Linear feedback shift register generators (e.g. Mersenne Twister(s)")

These are a special case of the F> generators

. Multiply-with-carry generators

Combination generators

“runif in R.
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The Linear Congruential Method

This method is an extension of the Multiplicative Congruential
Generator.

Ingredients:

m: the modulus; m > 0.

a: the multiplier; 0 < a < m.

c: the increment; O < ¢ < m.

xo: the starting value, or seed; 0 < xg < m.

A linear congruential sequence of random numbers is generated using

Typ+4+1 = (axn + c) mod m.
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Conditions Which Prevent Premature Cycling

The linear congruential sequence defined by m, a, c and xg has cycle
length m if and only if the following hold:

1. cis relatively prime to m

(Two integers are relatively prime if there is no integer greater than
one that divides them both (that is, their greatest common divisor is
one). For example, 12 and 13 are relatively prime, but 12 and 14 are
not.);

2. b = a — 1 is a multiple of p, for every prime p dividing m;

3. bis a multiple of 4, if m is a multiple of 4.
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For example,if m =8,b=4and xg = 3,and ¢ = 3. Then, a = 5 and
the sequence is

3,2,5,4,7,6,1,0,3

which has a cycle length 8.



Implementation

rlincong <-— function(n, m =
X <— numeric (n)
xnew <— seed
for (j in 1:n) {
xnew <— (a*xnew + cC)%3m
X[J]] <= xnew
h

x/m

}

2716,

a = 2"8+1 , c =

Default settings are chosen to satisfy conditions of the theorem: ¢ = 3 and m are
relatively prime since they do not share prime factors, a — 1 is a multiple of 2 which is
the only prime which divides m, and b is a multiple of 4 (m is a multiple of 4).
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Implementation

Run example with default settings and seed 372737:

u <- rlincong(2°16-1, seed = 372737)
ull:4]

## [1] 0.691467 0.707138 0.734528 0.773636
length (unique (u)) - (2716 — 1)

## [1] O

A full cycle was achieved, which is what the theorem predicts.
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Combination Generators

Mathematical folklore, hinted at by Wichmann and Hill (1982): if

Uq,U>s, ..., Uy, are independent uniform random variables on (0, 1), then
the fractional part of V. = "7, U; is also uniformly distributed on (0, 1).
See also Miller and Nigrini (2006).

Proof:

e When n = 2, calculate P(V < v) by conditioning on the value of
(U1 + Us).

e When n > 2, use induction, with facts like [v 4 [z]] = [v] + [z]-

Examples: Super-Duper, Wichmann-Hill
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Combination Generators

Numerical demonstration (n=3):

ul <— runif (10000

); u2 <— runif (10000); u3 <= runif (10000)
hist ( (ul+u2+u3) %$%1)

Histogram of (ul + u2 + u3)%%1
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Combination Generators: Wichman and Hill

Fori=1,2,...,
r;,; = (171:62') mod 30269
Y; = (172yi) mod 30307
2 = (170z;) mod 30323
U, = (x;/30269 + y;/30307 + 2;/30323) mod 1.0

Example of use:

RNGkind ("Wich")

runif (5)

## [1] 0.285345 0.895050 0.545943 0.736370 0.972083
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Combined multiple recursive generator

The combined multiple recursive generator (cmrg) of LEcuyer (1996) is
based on the difference of two underlying generators which are
constructed from

rn = (a12n—1 + a2xp_2 + azr,_3)my

Yn — (blyn—l + boyn—o + b3yn—3)m2
where a1 = 0, a» = 63308, a3 = —183326, b; = 86098, by, = O,
bz = —539608, m; = 231 — 1 = 2147483647 and m, = 21454834709.

The simulated numbers are then given by

Theory: the fractional part of U; — U, is uniformly distributed on (0, 1).
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“It’s high time we let go of the Mersenne Twister” (Vigna, 2019)

The Mersenne Twister is actually a collection of generators, all of which
are some form of shifted > generator. The original version uses

k = 19937, and since 219937 js a Mersenne prime, it has maximal cycle
length: 219937 _ 1,

Problems with the Mersenne Twister have been evident since its
inception.

o It fails two statistical tests in the BigCrush test suite.

e It wastes space in the processor cache since £ is unnecessarily
excessive.

e Much faster generators are available now.

e These and other problems are described by Vigna (2019).
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Seeing the problem for ourselves

Vigna (2019) describes a specific example involving the characteristic
polynomial of an Erdos-Renyi graph to numerically demonstrate that the
generator is producing too many 0’s in the trailing bits.

A more accessible example is as follows.

Define the random variable X to be the maximum runlength for Heads
generated from a sequence of 32 fair and independent coin tosses.

For each U generated by the Mersenne Twister, the following steps can
be used to carry out the transformation defined by X = ¢(U).

e Convert U to its binary representation and retain the leading 32
binary digits.

e Return the maximum runlength of 0’s in the binary representation.
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Seeing the problem for ourselves

e Calculate X,, = g(Uy) forn =1,2,...,10000 using R’s Mersenne
Twister and Wichmann-Hill

e Calculate Y;, = g(1 — U,) (maximum runlengths for Tails)

Mersenne Wichmann-Hill
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Accessing better generators in R

Wickham (2014) makes a compelling case for the use of the Rcpp facility
in R to interface with C++ and the GSL library (The GSL Team, 2021) to
speed up code, particularly random number generation.

To install ReppGSL (Eddelbuettel and Francois, 2022), you need to have
a working version of GSL.

On a computer running a Linux (Debian) operating system, this can be
installed using

sudo apt 1install libgsl-dev

The package gs/ (Hankin, 2006) provides a facility for accessing these
generators without needing to program in C++.
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Accessing better generators in R

Setting up the cmrg generator (LEcuyer, 1996) is as follows:

library (gsl)
r <- rng_alloc("cmrg")

rng_set (r, 100)
## [1] 100
rcmrg <— function(n) rng uniform(r, n)

We can then use the function rcmrg () in the same way that we would
use runif (). For example, generating 10 numbers proceeds as

remrg (10)

## [1] 0.75100266 0.27632556 0.80290789 0.79234885
## [5] 0.00991752 0.90312322 0.14127554 0.44023898
## [9] 0.50391344 0.88495743

90



Luxury generators

The luxury random number generators or ranlux algorithms (James,
1994) are also available in GSL. One of the faster ones is ranlxs0.

r <- rng_alloc("ranlxsO")

rng_set (r, 100)
## [1] 100

rlxs0 <- function(n) rng uniform(r, n)

rlxs0 (5)

## [1] 0.8630 0.9370 0.1817 0.5500 0.4464
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Permuted Congruential Generators (PCG)

O’Neill (2014) reconsidered the linear congruential generator but
permuted the low order bits in the output to create a fast but more
secure and statistically stronger set of generators.

The PCG family of generators (O’Neill, 2014) has been ported into R
using the Rcpp function through the dqrng package (Stubner, 2021).

library (dgrng)

The pcg64 generator:

dgRNGkind ("pcg64")
dgrunif (5)

## [1] 0.4168 0.8758 0.1363 0.6713 0.6155
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XOR shift generators

The dqgrng package also contains ports to the Xoshiro256+ and
Xoroshirol28+ generators (Blackman and Vigna, 2021).

The latter is the fastest generator available in the dqrng package.

dgRNGkind ("Xoshiro256+")
dgrunif (4)

## [1] 0.6200 0.7356 0.6089 0.9021

dgRNGkind ("Xoroshirol28+")
dgrunif (4)

## [1] 0.8794 0.9823 0.3808 0.9302
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Timing comparisons

How does the speed of these methods compare with R’s implementation
of the Mersenne Twister?.

dgRNGkind ("pcg64")
microbenchmark (runif (2e¢6), rcmrg(2e6), rlxsO (2e6), dqrunif (2e6))

## Unit: milliseconds
#¥# expr min lg mean median uq max neval

2e+006) 14.13 14.47 18.65 15.75 19.93 67.85 100

#4# runif (2e+06) 32.51 33.00 40.77 37.54 42 .42 89.72 100
#4# rcmrg (2e+06 60.00 61.56 69.49 ©65.14 70.560 126.064 100
#4# r1xs0 (

(

)
2e+06) 58.40 62.05 73.41 68.43 76.72 170.83 100
## dgrunif )

dgRNGkind ("Xoshiro256+")
microbenchmark (dgrunif (2e6))

## Unit: milliseconds
#¥ expr min lg mean median uq max neval
## dgrunif (2e+06) 13.55 13.78 16.39 14.11 15.7 63.29 100

dgRNGkind ("Xoroshirol28+")
microbenchmark (dgrunif (2¢6))

## Unit: milliseconds
#¥# expr min 1g mean median ug max neval
## dgrunif (2e+06) 13.14 13.32 15.5 13.65 13.81 61.1 100
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Xorshift128 is fast but ...

Machine learning methods are now being used to crack more
sophisticated generators (Hassan, 2021), such as the Xorshift128
generator

Security of generators is becoming a more important area of research,
though there are early results on cracking generators®

*Marsaglia (2003) was aware of a simple method to crack LCGs already in the 1970s. His
method requires only a few numbers and uses determinants of 2 x 2 matrices.
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