
COSC/DATA 405/505

Modelling and Simulation

1

Time Series and a First Look at the Markov Property
Outline

Autoregressive Processes of Order 1 (e.g. Flood Risk)

The Markov Property

Autocovariance and Autocorrelation

Higher Order Autoregressive Processes, (e.g. Population Ecology)

MA, ARMA and ARIMA Processes (e.g. Climate Change)

ARCH Processes (e.g. FTSE Stock Data)

2

An autoregressive time series model

Suppose ε1 and Z0 are independent normal random variables, and
suppose φ1 is a constant. Suppose the expected value of ε1 is 0, and the
variance is σ2ε > 0. µZ0

= E[Z0] and σ2Z0
= Var(Z0). Let

Z1 = φ1Z0 + ε1.

It is possible to show that Z1 is normally distributed, and using the
earlier results on expected value and variance, Z1 has mean φ1µZ0

and
variance σ2Z0

φ21 + σ2ε .

3

An autoregressive time series model - stationarity

We now want to find conditions on φ1 and µZ0
so that the distribution of

Z1 will be exactly the same as the distribution of Z0. This kind of
stationarity condition is often useful in modelling of processes that
occur in time (or in space, for that matter).

E[Z0] = µZ0
= E[Z1] = φ1µZ0

implies that either φ1 = 1 or µZ0
= 0.

V (Z0) = σ2Z0
= V (Z1) = σ2ε + φ21σ

2
Z0
.

If φ1 = 1, then σε = 0, which is not possible. Therefore, φ1 6= 1. This
means µZ0

= 0.

4

An autoregressive time series model - stationarity

But we also have

σ2Z0
= σ2ε + σ2Z0

φ21

so that

σ2Z0
(1− φ21) = σ2ε

which implies that φ21 < 1, and

σ2Z0
=

σ2ε
1− φ21

.

5

An autoregressive time series model

Summarizing the results of the example, we observe that if Z0 has a

normal distribution with mean 0 and variance σ2ε
1−φ21

, independent of ε1
which also has a normal distribution with mean

0 and variance σ2ε , then

Z1 = φ1Z0 + ε1

has the same distribution as Z0.

6

An autoregressive time series model

Now, let ε2 be another normal random variable, independent of ε1 but
with the same mean and variance. Then

Z2 = φ1Z1 + ε2

must have the same distribution as Z1.

In fact, for n = 2,3, . . .,

Zn = φ1Zn−1 + εn

defines a sequence of normal random variables all having mean 0 and

variance σ2ε
1−φ21

, when φ21 < 1 and the ε’s are independent of each other.

The Z’s have the same distribution but are dependent. This is a very
important form of dependence: the Z’s form a stationary Markov
process.

7

The Markov Property

Recall that if a sequence of random variables Z1, Z2, . . . , Zn is
independent, then their joint distribution can be factored:

f(z1, z2, . . . , zn) = f(z1)f(z2) · · · f(zn).

If the sequence is completely dependent, the factorization involves
complicated conditional distributions along the lines of:

f(z1, z2, . . . , zn) = f(zn|z1, z2, . . . , zn−1)f(zn−1|z1, . . . , zn−2) · · ·

· · · f(z4|z1, z2, z3)f(z3|z1, z2)f(z2|z1)f(z1).

Back in the 19th century, A. Markov realized that there might be a useful
class of models in between these two extremes.

8

The Markov Property

f(z3|z1, z2) can be approximated by f(z3|z2). This will usually be a
better approximation than f(z3) only - which is what independence
implies. This approximation says that z3 is dependent on z1 only
through z2 explicitly. In other words, given z2, no additional information
in the sample will provide information about z3.

Similarly, approximate f(z4|z1, z2, z3) by the simpler f(z4|z3), and so
on, finally approximating f(zn|z1, . . . , zn−1) by f(zn|zn−1).

That is, assume

f(z1, z2, . . . , zn) = f(zn|zn−1)f(zn−1|zn−2) · · ·

· · · f(z4|z3)f(z3|z2)f(z2|z1)f(z1).

... This is the Markov property.

9

The Lag 1 Autocovariance for AR(1) Data

We saw the use of autocorrelations and autocovariances in detecting
(linear) dependence problems in random number generation. These
tools are helpful in the study of linear time series models.

Recall that the covariance of X and Y is

E[XY]− E[X]E[Y].

Since

E[Zn] = 0

the covariance of Zn and Zn−1, also called the lag 1 autocovariance is

γ1 = E[ZnZn−1]

= E[(φ1Zn−1 + εn)Zn−1] =

= φ1E[Z2
n−1] + 0

= φ1σ
2
Z.

10

The Lag 1 Autocorrelation for AR(1) Data

Recall: the correlation is defined as the covariance of X and Y divided
by the product of the standard deviations of X and Y .

For a stationary AR(1) process, the standard deviations of Zn−1 and Zn
are the same, so we divide by the variance of Zn to get the lag 1
autocorrelation:

ρ1 =
γ1

Var(Zn)
= φ1.

Similar reasoning

ρk = φk1

11

The Theoretical Autocorrelation Function for the AR(1) Process

Here is a plot of the autocorrelation function for an AR(1) process with
φ1 = .8:

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c(0, 20)

c(
0,

 1
)

All data points are correlated with each other, but dependence decays
exponentially with increasing time between the points.

12

The Theoretical Autocorrelation Function for the AR(1) Process

Here is a plot of the autocorrelation function for an AR(1) process with
φ1 = −.8:

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

c(0, 20)

c(
−

1,
 1

)

Again, the correlations are all nonzero, but this time each observation is
negatively correlated with the previous observation.

13

An autoregressive time series model - with nonzero mean

Usually, the expected value or mean level of the process is some
nonzero value µ, so this value is usually subtracted from the time series.

That is, Zn = Yn − µ, where Yn is the original time

series, having expected value E[Yn] = µ.

Writing the autoregressive model in terms of Y ’s, we have

Yn = µ+ φ1(Yn−1 − µ) + εn.

14

Example

We consider the annual levels of Lake Huron in the LakeHuron data
object.

Time

La
ke

H
ur

on

1880 1900 1920 1940 1960

57
6

57
7

57
8

57
9

58
0

58
1

58
2

15

Example - Sample ACF

acf(LakeHuron)

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series LakeHuron

The sample ACF looks very similar to the theoretical ACF for an AR(1)
process with positive φ1.

16

Example - Fitting an AR(1) Model

The parameters of the AR(1) model can be estimated by maximum
likelihood estimation with the arima() function:
lh <- arima(LakeHuron, order=c(1,0,0))
lh

##
Call:
arima(x = LakeHuron, order = c(1, 0, 0))
##
Coefficients:
ar1 intercept
0.8375 579.1153
s.e. 0.0538 0.4240
##
sigmaˆ2 estimated as 0.5093: log likelihood = -106.6, aic = 219.2

The first component of the order parameter specifies the order of the autoregressive model: 1.

The other two components are 0, in this case. We will see their use later.

17

Example

The output from the function tells us that the φ1 parameter is estimated
as 0.8375, and µ is estimated at 579.1153.

Standard error estimates are provided for these estimates as well.

Both are small relative to the parameter estimates indicating that we
have a fair bit of precision.

The variance σ2 is also estimated as 0.5093.

18

Predicting with the Fitted Model

The fitted autoregressive model is

Ŷn = 579.1+ .8375(Yn−1 − 579.1)

By plugging in a value for Yn−1, we can use the fitted value to predict Yn.
The variance of the prediction can be calculated easily as well which
gives us a standard error for the prediction (when we take a square root).

This is all coded in the predict.Arima() function.

19

Predicting with the Fitted Model

For example, to predict the next 5 years of Lake Huron levels, use

predict(lh, n.ahead=5)

$pred

Time Series:

Start = 1973

End = 1977

Frequency = 1

[1] 579.8228 579.7078 579.6116 579.5310 579.4634

##

$se

Time Series:

Start = 1973

End = 1977

Frequency = 1

[1] 0.7136434 0.9308795 1.0569470 1.1370689 1.1900573

20

Simulating autoregressive time series of order 1

Once we have the estimated values of all parameters in an
autoregressive time series model, simulation is straightforward using a
for() loop.

A starting value Z0 is needed.

The first observed data point could serve this purpose, or the value
could be simulated from a normal distribution with mean 0 and variance
σ2/(1− φ21).

21

Example

Let’s simulate from the fitted model for the Lake Huron data.

n <- length(LakeHuron); phi1 <- .8375; sigma2 <-.5093

Z0 <- rnorm(1, mean = 0, sd = sqrt(sigma2/(1 - phi1ˆ2)))

epsilon <- rnorm(n, sd = sqrt(sigma2))

Z <- as.numeric(n)

Z[1] <- phi1*Z0 + epsilon[1]

for (i in 2:n) {
Z[i] <- phi1*Z[i-1] + epsilon[i]

}
mu <- 579.1153

SimLake <- Z + mu # add back the mean level

22

Graphing the Simulated Data

Time

O
bs

er
ve

d
Le

ve
l

1880 1920 1960

57
6

57
8

58
0

58
2

Time

S
im

ul
at

ed
 L

ev
el

0 20 40 60 80 100

57
6

57
8

58
0

58
2

Left panel: Lake Huron levels for the years 1875 through 1972. Right panel: 98 years of data simulated
from an autoregressive process designed to mimic the behaviour of the Lake Huron levels.

23

Simulating with the Built-In Function

The arima.sim() function can also be used to simulate autoregressive
time series data.

This function takes several arguments, including n to specify the
number of elements of the series, and model to specify the parameters
of the model, using a list.

This list can include an element called ar which contains the
autoregressive parameters and sd which contains the standard
deviation of the noise.

24

Example

Simulating the AR(1) process mimicking the Lake Huron levels runs as
follows:

Z <- arima.sim(98, model=list(ar=phi1, sd=sqrt(sigma2)))

SimLake2 <- Z + mu # add back the mean level

25

Graphing the Simulated Data

Time

O
bs

er
ve

d
Le

ve
l

1880 1920 1960

57
6

57
8

58
0

58
2

Time

S
im

ul
at

ed
 L

ev
el

0 20 40 60 80 100

57
6

57
8

58
0

58
2

Left panel: Lake Huron levels for the years 1875 through 1972.

Right panel: 98 years of data simulated from an autoregressive process designed to mimic the
behaviour of the Lake Huron levels, arising from the arima.sim function.

26

Higher Order Autoregressive Processes

Another example of a stationary time series model is the autoregressive
order 2 (AR(2)) process:

Zn = φ1Zn−1 + φ2Zn−2 + εn

as long as |φ2| < 1, φ1 + φ2 < 1 and φ2 − φ1 < 1.

Including the mean level, the model becomes

Yn = µ+ φ1(Yn−1 − µ) + φ2(Yn−2 − µ) + εn.

Higher order AR processes can be considered as well, where Yn
depends on terms involving Yn−3 and so on.

27

Example: Annual Canadian Lynx

The data in the lynx object concern the annual numbers of lynx trapped
in northern Canada for the years 1821 through 1934. The next figure
contains a trace plot of these counts, produced from the following code:
ts.plot(lynx) # draw a broken line curve through the data points
points(1821:1934, (lynx)) # include the data points on the plot

Time

co
un

ts

1820 1840 1860 1880 1900 1920

0
20

00
50

00

28

Example: Annual Canadian Lynx

What is obvious on the plot is the periodic behaviour.

Every few years the counts dramatically increase before just as
dramatically collapsing, almost to 0, remaining at that level for awhile
before repeating the cycle.

What is also evident on the plot, though not quite as obviously, is that
the variability of the counts changes, depending upon the stage of the
cycle.

Note, in particular, that when the troughs of the curve are at very similar
levels, but the peaks of the curve are highly variable. This is an indicator
that the variability is not constant.

29

Use a Square Root Transformation when Analyzing Counts

With count data, it is often a good idea to work with square roots of the
counts.

This kind of transformation has the effect of substantially reducing very
large values while having less effect on small and moderate values: this
is a form of {variance-stabilizing transformation.

30

Use of the Square Root Transformation

The next figure shows the effect of taking the square root on each of the
counts.

ts.plot(sqrt(lynx))

points(1821:1934, sqrt(lynx))

Time

co
un

ts
 (

sq
ua

re
 r

oo
t)

1820 1840 1860 1880 1900 1920

20
40

60
80

31

Use of the Square Root Transformation

Now the variability of the troughs is larger while the variability of the
peaks is slightly reduced.

Overall the variation is about the same, no matter what stage of the
cycle one is looking at.

32

Exploring the Sample ACF

Autocorrelations at lags 0, 1 and 2

acf(sqrt(lynx), plot=FALSE)$acf[1:3]

[1] 1.0000000 0.7571939 0.2796137

and at lags 3, 4 and 5

acf(sqrt(lynx), plot=FALSE)$acf[4:6]

[1] -0.1843740 -0.5118717 -0.6137455

Neighbouring values are highly correlated. Values separated by 5 or 6
time units are negatively correlated.

33

Autocorrelation Plot

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series sqrt(lynx)

Sinusoidal pattern is not accidental!

The AR(2) model has a close relationship with the differential equation:
y′′ = β1y

′+ β2y, which can model a harmonic oscillator such as a
pendulum.

34

ACF Plots for Simulated AR(2) Data
par(mfrow=c(1,2))
acf(arima.sim(110, model=list(ar=c(.5, -.4))),

main=expression(phi[2]==-.4))
acf(arima.sim(110, model=list(ar=c(.5, .4))),

main=expression(phi[2]==.4))

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

φ2 = − 0.4

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

φ2 = 0.4

The first plot
oscillates somewhat like the lynx data ACF.

35

Fitting an AR(2) Model to Data

We can fit the AR(2) model using maximum likelihood estimation for the
parameters, using the arima() function:
arima(sqrt(lynx), order=c(2,0,0))

##
Call:
arima(x = sqrt(lynx), order = c(2, 0, 0))
##
Coefficients:
ar1 ar2 intercept
1.3088 -0.7104 34.1280
s.e. 0.0648 0.0645 2.0449
##
sigmaˆ2 estimated as 76.51: log likelihood = -410.13, aic = 828.26

36

Fitting an AR(2) Model to Data

The fitted model is

Zn = 1.31Zn−1 − .7104Zn−2 + εn

where the error variance is estimated to be 76.51.

The mean level was estimated as 34.12, so Zn =
√
Yn − 34.12, where

Yj = # of lynx trapped in year j, for j = 1821, ...,1934

37

Using Simulation as a Model Check

We can use simulation to check if an AR(2) model is appropriate for
given data.

Simulation with a for() loop is possible, as it was for the AR(1) model,
and the arima.sim() function can be used with two values for the ar

parameter in place of one.

38

Simulating an AR(2) Model

The next figure shows the results of simulating from the AR(2) model for
the lynx data.

Simulations from the fitted model are compared with real data.

par(mfrow=c(2,2)); pars <- c(1.3088, -.7104)

sig <- sqrt(76.51); xbar <- 34.12

for (j in 1:4) {
ts.plot((arima.sim(110, model=list(ar=pars),

sd=sig)+xbar)ˆ2, ylab="", main=

paste("Simulation ", j))

}

39

Simulating an AR(2) Model

Simulation 1

Time

0 20 40 60 80 100

0
20

00
40

00

Simulation 2

Time

0 20 40 60 80 100

0
20

00
60

00

Simulation 3

Time

0 20 40 60 80 100

0
40

00
80

00

Simulation 4

Time

0 20 40 60 80 100

0
20

00
40

00

40

The ACF of Simulated AR(2) Data

This simulates the AR(2) process having the parameters that were
estimated on the square root of the lynx data:

acf(arima.sim(110, model=list(ar=pars), sd=sig), main="")

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

41

Prediction from an AR(2) Model

The predict.ARIMA() function can be used to predict future values of
this process as well:
lynx.ar2 <- arima(sqrt(lynx), order=c(2, 0, 0)) # store fitted model
predict(lynx.ar2, n.ahead=10) # predict 10 years into the future

$pred
Time Series:
Start = 1935
End = 1944
Frequency = 1
[1] 53.36 42.14 30.96 24.28 23.50 27.21 32.62
[8] 37.07 39.05 38.48
##
$se
Time Series:
Start = 1935
End = 1944
Frequency = 1
[1] 8.747 14.407 16.866 17.194 17.294 17.947
[7] 18.622 18.877 18.884 18.945

42

Prediction from an AR(2) Model

To predict on the original scale, we could get a rough approximate
prediction by squaring the predictions:

predict(lynx.ar2, n.ahead=10)$predˆ2

Time Series:

Start = 1935

End = 1944

Frequency = 1

[1] 2847.1 1776.0 958.3 589.7 552.1 740.2

[7] 1064.2 1374.5 1525.2 1480.8

More work would be needed to convert the standard errors - or a
bootstrap procedure could be used.

43

Summary of Results and Model Limitations

The predictions into the future amount to a form of extrapolation so
caution would be warranted when interpreting the results. Is lynx
trapping operational in the same way as in past?

As an approximation, the AR(2) model is a good start, providing more
realism than either independence or even an AR(1) model could provide.

However, the behaviour of the simulated data tends to be somewhat less
regular than the real data, suggesting that an important factor might be
missing from the analysis.

44

Moving Average Processes

Unlike AR processes where the data points are all dependent on each
other, the data points of an MA process only depend on each other if
they close together in time.

This offers new modelling possibilities.

45

The Moving Average Process of Order 1

The 0-mean moving average process of order 1 (MA(1)) is defined as

Zn = θ1εn−1 + εn

where the ε’s are independent and normally distributed with mean 0 and
variance σ2, and θ1 is a constant.

According to this definition, any εk will be independent of Zj for all j < k.

If we define Yn = Zn+ µ, then Yn is a MA(1) process with mean µ.

Because the ε’s have expectation 0, it follows that E[Zn] = 0.

46

Is this a Markov process?

The MA(1) process is not a Markov process, since

Zn = εn+ θ1εn−1

and

εn−1 = Zn−1 − θ1εn−2
so

Zn = εn+ θ1Zn−1 − θ21εn−2.

But

εn−2 = Zn−2 − θ1εn−3
so

Zn = εn+ θ1Zn−1 − θ21Zn−2 + θ31εn−3.

And continuing, we would see that Zn depends explicitly on all previous
Z’s. This means that prediction of Zn, given Zn−1 could be improved
upon by making use of earlier Z’s, contradicting the Markov property.

47

Development of the Variance for the MA(1) Process

By squaring both sides of the defining equation and taking
expectations, we have

E[Z2
n] = σ2(1 + θ21).

This is the variance of Zn, because E[Zn] = 0.

Details: Squaring the right hand side gives θ21ε
2
n−1 + ε2n+2θ1εnεn−1.

Since the ε’s are independent, E[εnεn−1] = E[εn]E[εn−1] = 0 so the
expected value of the right hand side is σ2θ21 + σ2.

48

Development of the First Lag Autocovariance

By multiplying the defining equation by Zn−1 and taking expectations,
show that

E[ZnZn−1] = θ1σ
2.

Details: To do this, you will need to use the fact that the defining
equation also implies that

Zn−1 = θ1εn−2 + εn−1.

Then

ZnZn−1 = εnεn−1 + θ1ε
2
n−1 + θ1εnεn−2 + θ21εn−1εn−2.

Taking expectations of this and using independence of the ε’s gives

E[ZnZn−1] = θ1E[ε2n−1] = θ1σ
2.

Thus, the covariance of Zn and Zn−1 is θ1σ2. This is the first lag
autocovariance.

49

Development of the First Lag Autocovariance

Since [Zn] = 0, the covariance is just E[ZnZn−1].

Use the same procedure as in the preceding part to show that

E[ZnZn−k] = 0

for k = 2,3, We deduce that the covariance of all autocovariances
at lags larger than 1 must be 0.

Details:

E[ZnZn−k] = E[(εn+ θ1εn−1)(εn−k + θ1εn−k−1)] = 0

because all of the products inside the expectation involve different ε’s
and, therefore, must have expectation 0, because of independence.

50

Development of the First Lag Autocorrelation

The kth autocorrelation is defined as the kth autocovariance divided by
the variance of the process. We deduce that all autocorrelations beyond
lag 1 are 0, and that the first one is nonzero.

Details: Since the autocovariances beyond lag 1 are all 0, dividing by
anything still gives 0. The lag 1 autocovariance is nonzero so dividing by
anything still gives a nonzero result.

51

Simulation of MA(1) Data

Simulate 1000 observations from an MA(1) process with θ1 = 0.9, using
the following code

ma1 <- arima.sim(1000, model=list(ma=c(.9)))

The sample autocorrelation function for the data is obtained as follows:

acf(ma1)

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series ma1

The autocorrelations are all 0 beyond

lag 1 as expected, and the first one is

positive which agrees with the formula.

52

Simulating an MA(1) Process with a Negative Parameter

Repeating the preceding simulation but with θ1 = −0.9:

ma1 <- arima.sim(1000, model=list(ma=c(-.9)))

acf(ma1)

0 5 10 15 20 25 30

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series ma1

The autocorrelations are all 0 beyond

lag 1 as expected and the first one is

negative which agrees with the formula.

53

Distinguishing Between MA(1) and AR(1) Processes

Given a set of time series data where you are faced with the question as
to whether an AR(1) or MA(1) process is appropriate as a model, what
action would you take, and how would you make your choice?

Answer: Plot the sample acf function and check to see if the
autocorrelations cut off after lag 1 (indicating MA(1)) or if they decay
exponentially (indicating AR(1)).

54

Fitting an MA Process to Data

The arima() function can be used to fit a moving average model to data.

For the data simulated earlier, in the vector ma1, we would use
ma1.fit <- arima(ma1, order=c(0, 0, 1)) # the third
component of order is the MA order
ma1.fit

##
Call:
arima(x = ma1, order = c(0, 0, 1))
##
Coefficients:
ma1 intercept
-0.897 0.002
s.e. 0.014 0.003
##
sigmaˆ2 estimated as 1.02: log likelihood = -1431, aic = 2868

55

Fitting an MA Process to Data

The fitted model is

Ŷn = µ̂+ θ1ε̂n−1.

where εn−1 is the difference (residual) between Yn−1 and Ŷn−1.
(Ŷ0 = µ̂.) Plugging in the results from the output, we have

Ŷn = −.8946ε̂n−1.

56

Making Predictions

Predicting the next 5 observations can be done with the predict.ARIMA
function as follows:

predict(ma1.fit, n.ahead=5)

$pred
Time Series:
Start = 1001
End = 1005
Frequency = 1
[1] -0.649028 0.002103 0.002103 0.002103
[5] 0.002103
##
$se
Time Series:
Start = 1001
End = 1005
Frequency = 1
[1] 1.012 1.359 1.359 1.359 1.359

57

The Moving Average Process of Order 2 (MA(2))

This is defined as

Zn = θ2εn−2 + θ1εn−1 + εn

where the ε’s are independent and normally distributed with mean 0 and
variance σ2, θ2 and θ1 are constant.

According to this definition, any εk will be independent of Zj for all j < k.

If we define Yn = Zn+ µ, then Yn is a MA(2) process with mean µ.

58

Simulation of MA(2) Data

We can simulate 1000 observations from an MA(2) process with θ1 = 0.5

and θ2 = 0.7 using the following code

ma2 <- arima.sim(1000, model=list(ma=c(.5, .7)))

acf(ma2)

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series ma2

The autocorrelations are all 0 beyond

lag 2 as expected and the first two are

nonzero.

The ACF gives us a way to distinguish data following an MA(2) process
from an MA(1) process.

59

Fitting MA(2) Models

Use the arima() function to estimate the parameters for given data.

For the ma2 data, we would use
ma2.ma2 <- arima(ma2, order=c(0, 0, 2)) # Order MA(2)

60

Predicting Future Values in MA(2) Models

We use the predict.Arima() function to predict the next values in the
sequence. To predict the next 10 values of the ma2 series, we use
predict(ma2.ma2, n.ahead=10)

$pred
Time Series:
Start = 1001
End = 1010
Frequency = 1
[1] -0.96651 -1.32366 -0.06941 -0.06941 -0.06941
[6] -0.06941 -0.06941 -0.06941 -0.06941 -0.06941
##
$se
Time Series:
Start = 1001
End = 1010
Frequency = 1
[1] 1.005 1.140 1.323 1.323 1.323 1.323 1.323
[8] 1.323 1.323 1.323

61

The autoregressive-moving average process of order 1, 1 (ARMA(1, 1))

This is defined as

Zn = φ1Zn−1 + θ1εn−1 + εn

where the ε’s are independent and normally distributed with mean 0 and
variance σ2, θ2 and θ1 are constant.

According to this definition, any εk will be independent of Zj for all j < k.

If we define Yn = Zn+ µ, then Yn is an ARMA(1) process with mean µ.

62

Simulating ARMA(1,1) Data

Simulate 1000 observations from an ARMA(1, 1) process with φ1 = 0.5

and θ2 = 0.7 using the following code

arma11 <- arima.sim(1000, model=list(ar=c(.5), ma=c(.7)))

63

Fitting and Predicting with ARMA(1,1) Models

Use the arima() function to estimate the parameters.

For the arma11 data set, we would use

arma11.arma11 <- arima(arma11, order=c(1, 0, 1))

Use the predict.Arima() function to predict the next values in the
series.

64

The Integrated Autoregressive-Moving Average Process (ARIMA)

ARIMA processes allow for random trends.

The ARIMA(1, 1, 1) is defined as

Xn = Xn−1 + Zn

where

Zn = φ1Zn−1 + θ1εn−1 + εn

and where the ε’s are independent and normally distributed with mean 0
and variance σ2, θ2 and θ1 are constant.

An ARIMA(1,1,1) process with drift µ is defined as Xn = Xn−1 + Yn

where Yn = Zn+ µ; this incorporates a deterministic trend as well as a
random trend.

65

Simulating ARIMA Data

We can simulate 1000 observations from an ARMA(1, 1, 1) process with
φ1 = 0.5 and θ2 = 0.7 using the following code

arima11 <- arima.sim(1000, model=list(order=c(1, 1, 1),

ar=c(.5), ma=c(.7)))

ts.plot(arima11)

Time

ar
im

a1
1

0 200 400 600 800 1000

0
50

10
0

15
0

Note the apparent trend.
This is not systematic
and could just as likely
trend downward.

66

Fitting and Predicting with ARIMA Models

Use the arima() function to estimate the parameters.

For the simulated data in arima11, we would use

arima11.arima <- arima(arima11, order=c(1,1,1))

the middle one indicates 1 integration order

Use the predict.Arima() function to predict the next values in the
series.

67

Changing the Noise Standard Deviation

In order to simulate data with a different noise standard deviation, use
the sd argument in the arima.sim() function as, for example, with
σ = 10:

arima11 <- arima.sim(1000, model=list(order=c(1, 1, 1),

ar=c(.5), ma=c(.7)), sd=10)

68

Automatic Fitting of ARIMA Models Using AIC

The auto.arima() function in the forecast package uses AIC (and
related criteria) to automatically choose from among the different
models. Models with smaller AIC values are preferred.

The AIC criterion balances the goodness of fit of the model to the data
via maximum likelihood estimation with a penalty on the complexity of
the model.

In other words, a model with many parameters, that is, a very complex
model, might fit the data very well, while a model with only a few
parameters is simple but might not fit the data well.

AIC strikes a balance between these simplicity and goodness of fit.

69

Some Illustrative Examples
mydata <- arima.sim(200, model=list(ma=c(.1, -.85))) # MA(2) data
library(forecast)
auto.arima(mydata)

Series: mydata
ARIMA(2,0,0) with zero mean
##
Coefficients:
ar1 ar2
0.136 -0.578
s.e. 0.057 0.057
##
sigmaˆ2 estimated as 1.35: log likelihood=-313.1
AIC=632.2 AICc=632.4 BIC=642.1

70

Plotting Simulated MA(2) Data

par(mfrow=c(1,2))

ts.plot(mydata); acf(mydata)

Time

m
yd

at
a

0 50 100 150 200

−
3

−
1

0
1

2
3

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series mydata

71

Simulating and Fitting ARMA(1,1) Data
mydata <- arima.sim(200, model=list(ar=c(.6), ma=c(.3))) # ARMA(1,1)
auto.arima(mydata)

Series: mydata
ARIMA(1,0,1) with zero mean
##
Coefficients:
ar1 ma1
0.544 0.342
s.e. 0.078 0.086
##
sigmaˆ2 estimated as 0.967: log likelihood=-279.9
AIC=565.7 AICc=565.8 BIC=575.6

72

Plotting Simulated ARMA(1,1) Data

par(mfrow=c(1,2))

ts.plot(mydata); acf(mydata)

Time

m
yd

at
a

0 50 100 150 200

−
4

−
2

0
2

4

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

Series mydata

73

Simulating and Fitting ARIMA(1,1,1) Data
mydata <- arima.sim(200, model=list(order=c(1,1,1), ar=c(.6), ma=c(.3))) # ARIMA(1,1) data
auto.arima(mydata)

Series: mydata
ARIMA(1,1,1)
##
Coefficients:
ar1 ma1
0.586 0.351
s.e. 0.076 0.093
##
sigmaˆ2 estimated as 0.99: log likelihood=-282.3
AIC=570.5 AICc=570.7 BIC=580.4

74

Plotting Simulated ARIMA(1,1,1) Data

par(mfrow=c(1,2))

ts.plot(mydata); acf(mydata)

Time

m
yd

at
a

0 50 100 150 200

−
40

−
20

0
10

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

Series mydata

The ACF has no meaning here, since this process is not stationary - it
has random trends as seen on the plot on the left.

75

Application to Global Warming

The data in Globaltemps.R are the differences in the global average
temperature from that of 1990 for the years 1880 through 2016.

source("Globaltemps.R")

temps <- ts(temps, start = 1880, end = 2016)

ts.plot(temps)

Time

te
m

ps

1880 1900 1920 1940 1960 1980 2000 2020

−
0.

5
0.

0
0.

5

Data are from Datahub (https://datahub.io/core/global-temp).

76

Fitting an ARIMA(1,1,1) Model
temps.arima <- arima(temps, order = c(1,1,1))
temps.arima

##
Call:
arima(x = temps, order = c(1, 1, 1))
##
Coefficients:
ar1 ma1
0.352 -0.702
s.e. 0.144 0.104
##
sigmaˆ2 estimated as 0.0104: log likelihood = 117.7, aic = -229.3

This assures us that there is nonstationarity in the data - of the kind that has probably
always been operating for millenia - i.e. random trends.

77

Is there a Deterministic Trend?

A deterministic trend in a nonstationary model is called drift.

We can informally check to see if there are trends with slope .001, .003,
.005, .007 or .009 in the 137 observations by subtracting such trends out
and comparing the resulting AIC values. (Remember we want to
minimize AIC.)

78

Is there a Deterministic Trend?
temps.arima <- arima(I(temps-.001*(1:137)), order = c(1,1,1))
temps.arima$aic

[1] -230.3

temps.arima <- arima(I(temps-.003*(1:137)), order = c(1,1,1))
temps.arima$aic

[1] -231.9

temps.arima <- arima(I(temps-.005*(1:137)), order = c(1,1,1))
temps.arima$aic

[1] -233.2

temps.arima <- arima(I(temps-.007*(1:137)), order = c(1,1,1))
temps.arima$aic

[1] -233.8

temps.arima <- arima(I(temps-.009*(1:137)), order = c(1,1,1))
temps.arima$aic

[1] -233.7

It looks like there might be drift value of about .007. (You could also use auto.arima()
to get a similar result.)

79

Using Simulation to Compare Scenarios

Our fitted model output:
temps.arima <- arima(I(temps-.007*(1:137)), order = c(1,1,1))
temps.arima

##
Call:
arima(x = I(temps - 0.007 * (1:137)), order = c(1, 1, 1))
##
Coefficients:
ar1 ma1
0.394 -0.775
s.e. 0.131 0.088
##
sigmaˆ2 estimated as 0.01: log likelihood = 119.9, aic = -233.8

80

Comparing No Trend Scenario at 2050 with Trend Scenario

n <- 34 # forecast to 2050 from 2016

temp.sim <- arima.sim(n-1, model=list(order=c(1,1,1),

ar=c(.394), ma = -.775), sd = sqrt(.01)) + temps[137]

temptrend.sim <- temp.sim +.007*(1:n) + temps[137]

notrendsim <- ts(temp.sim, start=2017,

end=2017+n-1) # convert to ts object

trendsim <- ts(temptrend.sim, start=2017,

end=2017 + n-1) # convert to ts

81

Single Simulation Realizations from the Two Possible Scenarios

par(mfrow=c(1,2))

ts.plot(notrendsim, ylim=c(0,2), ylab="no trend model")

ts.plot(trendsim, ylim=c(0,2), ylab="trend model")

Time

no
 tr

en
d

m
od

el

2020 2030 2040 2050

0.
0

0.
5

1.
0

1.
5

2.
0

Time

tr
en

d
m

od
el

2020 2030 2040 2050

0.
0

0.
5

1.
0

1.
5

2.
0

82

Projected Temperature Increase by 2050

Repeated simulations under the two scenarios allows us to make a
comparison at any percentile level we wish, such 2.5%, 50% and 97.5%,
as here:
Nsims <- 10000
temp2050 <- numeric(Nsims)
for (j in 1:Nsims) {

temp.sim <- arima.sim(n-1, model=list(order=c(1, 1,1),
ar=c(.394), ma = -.775), sd = sqrt(.01)) + temps[137]

temp2050[j] <- temp.sim[n]
}
quantile(temp2050, c(.025, .5, .975)) # no trend

2.5% 50% 97.5%
0.06429 0.54778 1.04056

quantile(temp2050+.007*n, c(.025, .5, .975)) # with trend

2.5% 50% 97.5%
0.3023 0.7858 1.2786

These are empirical projections and do not incorporate any of the science behind global circulation
models.

83

Projected Temperature Increases by 2100

The same kind of simulation exercise can be carried out for projections
to 2100:
temp2100 <- numeric(Nsims)
n <- 84 # number of years from 2016 to 2100
for (j in 1:Nsims) {

temp.sim <- arima.sim(n-1, model=list(order=c(1,1,1),
ar=.394, ma = -.775), sd = sqrt(.01)) + temps[137]

temp2100[j] <- temp.sim[n]
}
quantile(temp2100, c(.025, .5, .975)) # no trend

2.5% 50% 97.5%
-0.1671 0.5447 1.2453

quantile(temp2100+.007*n, c(.025, .5, .975)) # with trend

2.5% 50% 97.5%
0.4209 1.1327 1.8333

84

Another Markov Process - ARCH model

The ARCH model, and its more sophisticated variant, GARCH, are
important models used to analyze financial time series, such as stock
indices and treasury bond yields.

The following trace plot shows daily log returns for the FTSE (Financial
Times Stock Exchange) for 1991 and 1992:

logreturns <- diff(log(EuStockMarkets[1:412, 4]))
ts.plot(logreturns, ylab="log returns")

Time

lo
g

re
tu

rn
s

0 100 200 300 400

−
0.

04
0.

00
0.

04

The log return for day t
is the logarithm of xt/xt−1.
It gives an indication as
to how well the market is
doing. A positive log re-
turn means that the mar-
ket went up.

85

ACF of the Log Returns

Analyze the full data set:

logreturns <- diff(log(EuStockMarkets[, 4]))

par(mfrow=c(1,2))

acf(logreturns)

acf(logreturnsˆ2)

0.00 0.04 0.08 0.12

0.
0

0.
4

0.
8

Lag

A
C

F

Series logreturns

0.00 0.04 0.08 0.12

0.
0

0.
4

0.
8

Lag

A
C

F
Series logreturns^2

There is a slight autocorrelation at lag 1 in the raw log returns, but there is somewhat more
autocorrelation in the squared log returns (right panel).

86

The ARCH model

A model which gives similar behaviour to the daily log returns for the
FTSE is the following:

For day t, the log return is given by

yt = stZt

where

st =
√
a0 + a1y

2
t−1 + a2y

2
t−2 + a3y

2
t−3

and Zt is a standard normal random variable.

The parameter values are a0 = 0.00001, a1 = 0.1 and a2 = 0.05 and
a3 = .08. Note this model is a lot like an autoregressive process of
order 3 in terms of y2t .

We can start of a simulation by setting the first three values of yt to the
first three values from the observed log returns.

87

The ARCH model

n <- 412 # number of days for the simulation

a <- c(.1, .05, .08); a0 <- .0001

y <- numeric(n); y[1:3] <- logreturns[1:3]

for (t in 4:n){
s <- sqrt(a0 + a[1]*y[t-1]ˆ2 + a[2]*y[t-2]ˆ2 +

a[3]*y[t-3]ˆ2)

y[t] <- s*rnorm(1)

}

88

The ARCH Model

ts.plot(y, ylim=c(-.04, .04))

Time

y

0 100 200 300 400

−
0.

04
0.

00
0.

02
0.

04

As in the actual series, the simulated values hover between ±.01 but occasionally between ±.04.

We might use this model to predict future behaviour of the FTSE, such as how long it might take to
exceed some value, such as .04.

89

The ARCH Model

Suppose we want to simulate the ARCH process until the first time it
exceeds 0.04.

We don’t know beforehand when this will occur, we wouldn’t know how
to stop the for() loop at the right time, so we should use a while()

loop.

90

The ARCH Model

a <- c(.1, .05, .08); a0 <- .0001

y <- numeric(n); y[1:3] <- logreturns[1:3]

while (y[t] < .04){
t <- t+1

s <- sqrt(a0 + a[1]*y[t-1]ˆ2 + a[2]*y[t-2]ˆ2

+a[3]*y[t-3]ˆ2)

y[t] <- s*rnorm(1)

}
print(t)

[1] 1326

By repeatedly running this simulation, we could obtain a distribution of
the times until we would expect the log returns to first exceed .04. This
kind of information would be useful, for example, in pricing certain
options.

91

