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1
Wildfire, Board Games and Statistics

Modelling and simulation is a fascinating interplay between computer science, mathematics and statistics. Appli-
cations are boundless. In this short chapter, we provide brief vignettes to begin to suggest some of the possibilities.
Specifically, we consider applications in risk assessment, gaming and statistical analysis.

1.1 Wildfire risk: bootstrapping a deterministic fire model

Wildfire risk is of increasing importance in Canada and around the world, as the climate changes, and because of
human disturbance of the natural landscape. Modelling and simulation play a crucial role in assessing the risk of
wildfires to property and community infrastructure. An early example of a wildfire risk assessment is described
by Braun et al. (2010). It provides an example of bootstrap simulation applied to a deterministic wildfire growth
simulator, in this case, the Prometheus Wildland Fire Growth model (Tymstra et al., 2010).

Here, we consider output from a more accurate simulator called Dionysus which is described in the paper by
Han and Braun (2014). Data on the areas and corresponding simulated areas for 99 fires in a subregion of the
Muskoka District of Ontario that burned between 1980 and 2010 are plotted in the box plots displayed in Figure
1.1. The bold horizontal lines in the interior of each box represent the medians for the two datasets. Recall that the
median is the middle or 50th percentile of a sample or distribution. Here we have an indication that the median of
the true fire size distribution is somewhat lower than the median of the simulated fires. The whisker at the bottom
of the simulated box plot indicates the possibility of very small simulated fires, while the lack of such a whisker
in the box plot for the true fires indicates that there is a minimum size for the true fires. This reflects the fact that
fires below a certain size might extinguish without intervention or with minimal human intervention so they do not
enter the records.

Muskoka is home to a vast number of very expensive properties and is heavily forested but with many lakes
and streams fragmenting the landscape from a wildfire perspective. The actual fires were often detected almost
immediately, so the time of burning before suppression was much less than a day in most cases. The simulated
fires were allowed to burn for 1 hour under the weather conditions that were present on the day that the fire actually
burned.

Figure 1.1 shows results for the simulator for one of the fires. The different types of green areas represent
different types of fuel (i.e. vegetation) and the blue areas represent bodies of water. The yellow areas represent the
simulated burned areas according to the percentiles 0.1, 0.25, 0.5, 0.75, 0.9, read from left to right. For example,
the probability that the fire is contained in the yellow region in the left-most panel is 10%, while the probability
that it is contained in the yellow region in the right-most panel is 90%.

1.1.1 Simulating a popular long-standing board game

Monopoly is a game played by rolling a pair of dice and moving an object (called a token) around colored locations
called properties according to the sum of the number of observed dots

1
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Figure 1.1: Simulated and actual burned areas in Muskoka, Ontario.

Figure 1.2: Simulated wildfire in the Muskoka region, burning for 1 hour. The yellow region in the first panel
corresponds to the amount of fire burned at the 10th percentile; panel two gives the 25th percentile, panel three
gives the 50th percentile, panel four gives the 75th percentile, and panel five gives the 90th percentile.

The left panel shows the various color-coded properties of the Monopoly board. The color coding has been
chosen to match the colored properties used in the actual game. The grey bars represent non-colored areas of the
board such as railroad, utilities, and so on. The black bar in the top left corner represents Jail. When a player lands
on the bar in the lower right corner, they must immediately go to jail.

The results of the first two dice throws for a single player are shown in the second and third panels. The white
circle (the token) represents the player’s location on the board. The value at the center represents the sum of the
values on the dice.

Having demonstrated a few moves on the Monopoly board, we are now ready to conduct a major simulation to
determine which properties are most frequently landed on by a single player. The basic R code for the simulation
is as follows:
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Nplays <- 1000000

lands <- numeric (Nplays)

lands[1l] <=1

for (i in 2:Nplays){
currentthrow <- sample(l:6, size=2, replace=TRUE)
lands[i] <= (lands[i-1] + sum(currentthrow) - 1)%%40 + 1
if (lands[i]==31) lands[i] <- 11

On a 2 GHz laptop computer, this code takes less than 2 seconds to execute, resulting in the sequence of
properties landed on by a single individual in 1000000 moves.

The following is a histogram whose bars are color-coded according to the property colors and whose bar heights
are proportional to the frequencies with which the various properties are landed on.

Which Property is Landed on Most Often?
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Is it surprising that the dark blue properties are not landed on as frequently as the reds and oranges? Why is Jail
so popular? Notice the increase in frequency as one proceeds from Jail through the light purple properties towards
the orange properties; how is this increase related to the frequencies of the values of pairs of dice?

1.2 Comparing statistical estimators via simulation

A common problem in statistical research is to compare the quality of different estimators by simulation. In this
section, we will compare the sample mean and sample median, using simulated random data.

1.2.1 Background

It is known that the median can sometimes be more appropriate than the mean when measuring central tendency.
For symmetric distributions, both the mean and the median are unbiased. For normally distributed data, it is known
that the variance of the mean is less than the variance of the median. This implies that the sample mean is a more
precise estimator of the true mean, than the sample median.

When there are outliers, the median is often recommended over the mean, since the outliers can cause inaccu-
racies in the mean estimate. The median is said to be robust to such anomalies.
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Sample Size: 10
variance of means variance of medians

normal 0.10 0.14
t20 0.12 0.15

t10 0.13 0.15

2 1.70 0.23

Sample Size: 30
variance of means variance of medians

normal 0.04 0.05
20 0.04 0.05

t10 0.04 0.05

2 0.70 0.08

Sample Size: 100
variance of means variance of medians

normal 0.01 0.01
t20 0.01 0.02
t10 0.01 0.02

t2 0.11 0.02

Table 1.1: Variances of averages and variances of medians for the samples coming from four different distribution
types and three different sample sizes.

1.2.2  Simulation study

In our study, we

* simulated random data from several different distributions: normal, ¢2, t19, and t9¢ at sample sizes n =
10, 30 and 100.

calculated the means and medians for each sample

created a boxplot of the means and medians for visual comparison

computed the variances of the means and medians for numerical comparison

1.2.3 Results: tabular variance comparisons
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Figure 1.3: Mean versus median comparisons (sample size: 10)
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Figure 1.5: Mean versus median comparisons (sample size: 100)

1.2.4 Conclusions

For normal, 2, and t1, the mean has smaller variance than the median, independent of sample size. For ¢, data,
the mean has a much larger variance. The variability of the mean and median tends to be similar except for the ¢,
case, where the variability of the mean can be quite extreme.

1.3 Chapter Endnotes

We have chosen the R programming language (R Core Team, 2024) for our code demonstrations. This choice was
made on the basis of the similarity R scripts share with generic pseudocode: simplicity. On the other hand, R is
notoriously slow, so other programming languages will be preferred in practice. A knowledgeable programmer
should be able to translate R code to the relevant language fairly easily.

There are many books and online references concerned with modelling and simulation. Some are focussed on
the computational aspects, some on aspects related to theoretical physics, and some on statistical aspects. A very
good introductory account, mainly from a probability and statistics perspective, can be found in the textbook by
Ross (1990). A very comprehensive treatment which is more mathematical can be found in the work of Knuth
(2014). Another useful book to consult is by Law et al. (2007).

Some of the material in the current work, particularly that on simulation of normal random variables and
multivariate rejection sampling, has been taken from the Simulation chapter in the book by ?.
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Generating and Testing Pseudorandom
Numbers

In this chapter, we first ...

2.1 Pseudorandom number generation

Simulation of realistic scenarios usually requires the incorporation of uncertain or unpredictable elements. This
chapter describes how to simulate random numbers on a computer. For some applications, it is possible to use truly
random sequences of numbers derived from atmospheric observations or emissions from radioactive substances.
We will describe deterministic' methods of generating values which are then treated as though they are random.
Simulated random numbers are called pseudorandom numbers, because they are usually not truly random. For
some purposes, they can serve as a reasonable approximation. On the other hand, we will also see that caution is
warranted under many circumstances. As was pointed out by Coveyou (1969), the generation of random numbers
is too important to be left to chance.

The advantages of pseudorandom number generation over the use of these truly random sequences lie in the
speed with which certain algorithms will produce large quantities of such numbers and in the fact that pseudoran-
dom numbers can be reproduced. This latter fact turns out to be a double-edged sword: while reproducibility is
important for checking scientific results, for example, this property renders the numbers vulnerable to attacks. For
example, a lottery corporation will want to prevent their sequences from being correctly modelled, since future
values are not supposed to be predicted by unauthorized individuals.

2.2 Predictable versus unpredictable sequences

The most common techniques for constructing pseudorandom variables on a computer are based on sequential
generation. That is, previous values are used as inputs to some sufficiently complicated function whose output is
the next value in the sequence.

2.2.1 Linearity is highly predictable

If we attempt to generate a sequence by using a linear function of the form
Ty =a+ bx,_1

where a and b are fixed constants, it will be too easy to predict successive members of our sequence. This would
define, possibly, the worst of all pseudorandom number generators, since it would be perfectly predictable.

li.e. non-random
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Example 2.1 Suppose, forn =1,2,...,
Ty =3+ 2wpn_1,
and zy = 2. Using the above formula with n = 1,2 and 3, we obtain

1 = 7, To = 17, I3 = 37.

With or without the use of the formula, we can predict that the next numbers would 57, 77, and so on.

J

The kind of predictability coming from a linear mapping is obviously not a good characteristic of a random
number simulator. The next question to consider is whether there are nonlinear mappings which are satisfactorily
unpredictable.

2.2.2 Nonlinearity does not always yield unpredictable sequences

To obtain less predictable sequences, we will require a function that will variously lead to an increase or a decrease.
Only nonlinear functions have such a property. Not all do.

Example 2.2 The cosine function is a well-known nonlinear function, so we let f(z) = mcos(z). We
start with £y = 2 and generate 12 successive values from

Tn = f(xn—l)-

X <- 2; prnumbers <- numeric(l2); f <- function(x) pixcos(x)
for (n in 1:12) {

x <- £ (x)

prnumbers[n] <- x

}

prnumbers

## [1] -1.3073638 0.8180586 2.1477164 -1.7135662 -0.4470026 2.8329212
## [7] -2.9931147 -3.1070269 -3.1397161 -3.1415871 -3.1415927 -3.1415927

The first few numbers produced by this function are certainly less predictable than the ones generated by
the linear map, but eventually, this mapping converges to a single number.

J

The convergence observed in Example 2.2 occurs because the mapping = f(x) has a fixed point at z = —r,
since f(—m) = —1, and this fixed point is stable, meaning that if x,,_; is larger than the fixed point, then z,, =
f(xp—1) will be smaller than x,,_1, and if 2,,_; is smaller than the fixed point, then x,, will be larger than x,,_1,
and in both cases, x,, will be closer to the fixed point than z,,_; was.

In general, the stability of a fixed point is related to the slope or derivative of the curve defined by any function
f(z) in a neighbourhood of the fixed point; if the slope is less than 1 in absolute value, the point is stable. Figure
2.1 illustrates the situation for the iteration described in Example 2.2. As the iterates approach the fixed point, the
function slope is less than 1 (in absolute value) so the moves between iterates are small, and they become smaller
as the fixed point is approached. This kind of stability is required if the goal is to numerically solve an equation of
the form f(x) = x; it is not a desirable characteristic of a random number simulator. Instead, we need functions
for which any fixed points would be unstable, that is, where the derivative at any fixed point is larger than 1 in
absolute value.
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Figure 2.1: Convergence of x,, = 7 cos(z,_1) mapping. The arrows show the trajectory of the latter points in the
sequence defined in Example 2.2 as they converge toward the fixed point of the function f(z) = 7 cos(x). Also
shown is a dashed reference line of slope 1.

2.2.3 Nonlinear mappings with several unstable fixed points

By increasing the frequency of the waveform described by a periodic function, we can increase the number of
possible fixed points in the interval [—1, 1]. Thus, derivative magnitudes of the fixed points will increase, thereby
ensuring that they are not stable. In turn, we obtain sequences that appear less predictable and which do not
converge to any single fixed value.

Example 2.3 The function plotted in Figure 2.2 is f(x) = cos(30x). The 45 degree line is overlaid,
showing where f(z) = x. That is, fixed points occur at each intersection of these graphs. We can see

a large number of fixed points. Note that the derivatives near the fixed points are also relatively large,
inducing instability in the map defined by

Zp, = c08(30z,,—1).

The first 48 successive values from this map, starting with o = 2.0 are certainly less predictable than
before, as can be seen in the trace plot pictured in Figure 2.3.
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Figure 2.2: A mapping with more, unstable, fixed points. The dashed reference line has slope 1.
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Figure 2.3: Trace plot of first 48 numbers sequentially generated from the cosine map, z,, = cos(30z,,—1).

Repeated computations involving trigonometric functions can require more runtime than simpler computations.
Therefore, most random number generators that have been implemented for general use do not use such functions.
Instead, the operations carried out by random number generators are addition, multiplication, and division. In fact,
an important operation associated with random number simulation is to find the remainder after division. This
class of operations comprises modular arithmetic.

Finding the remainder after dividing a positive integer a by another positive integer m is also referred to as
finding the congruence of a modulo (or “mod”) m. We can always write a = gm + b for integers ¢ and b. Since b
is the remainder of « after dividing by m, we write b = a (mod m) to indicate that b is congruent to a modulo m.

Functions of the form

f(z) =az (mod m)

have jump discontinuities. Functions with jumps can sometimes induce mappings which seem to be unpredictable.

7

N

Example 2.4 Consider the function f(z) = 326782 (mod 33271):

modfun <- function (x) (32678%*x) %$%33271

Its graph is plotted in Figure 2.4. Consider the first 40 pseudorandom numbers produced by this function
via the mapping

Ty = 32678z,_1 (mod 33271)

with ¢y = 2. These values are traced in Figure 2.5, showing a much less predictable pattern than any we
have seen so far.

2.2.4 Congruential random number generators

The earliest pseudorandom number generators considered were of the form

Tn = azp—1 (modm)

Un

Usually, m is a large integer, and a is another integer which is smaller than m.

To begin, an integer x is chosen between 1 and m. z is called the seed.

This is called a multiplicative congruential generator. Linear congruential generators are similar: z, =
(a £p—1 + ¢) (mod m) for a given positive integer c.
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Figure 2.4: An example of a nonlinear function with jumps.
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Figure 2.5: Trace plot of the first 40 numbers coming from the nonlinear function with jumps.

The quality of the generator depends on the values of the parameters a, c and m. Small values of m are not
recommended, since there can be no more than m distinct values generated according to the method.

In fact, if the parameters are not chosen well, it is possible for the sequence of values to repeat or exhibit
cycling before the full set of m values is obtained. Because of the modular arithmetic used in the computation, the
longest cycle that could be hoped for is of length m. It is easy to cause cycling prematurely. Good generators have
maximal cycle length; in other words, they do not cycle before the mth number is generated.

Example 2.5 The code below produces 6 pseudorandom numbers based on the multiplicative congruential gen-
erator:
Ty = TTp—_1 mod 32

Up = Ty /32
with initial seed xo = 2.
random.number <—- numeric (6)
random.seed <- 2

for (j in 1:6) {
random.seed <- (7 % random.seed) %% 32



2.2. PREDICTABLE VERSUS UNPREDICTABLE SEQUENCES 11

random.number[j] <- random.seed/32

The first 6 values in the sequence are
random.number [1:6]

#4# [1] 0.4375 0.0625 0.4375 0.0625 0.4375 0.0625

Note that only 2 distinct values were obtained, since 7 x 2 = 14 and 14 x 7 = 98, the latter being 2 modulo
32. The cycle length is 2, which is much less than the 32, we might have hoped for.

The next example gives a generator with somewhat better behaviour.

Example 2.6 The code below produces 30268 pseudorandom numbers based on the multiplicative congruential
generator:
x, = 171x,_1 mod 30269
Up = T /30269

with initial seed xo = 27218.
random.number <- numeric (30268)

random.seed <- 27218

for (j in 1:30268) {
random.seed <—- (171 * random.seed) %% 30269
random.number[j] <- random.seed/30269

The results, stored in the vector random. number, are in the range between 0 and 1. These are the pseudo-
random numbers, U1, Us, . . . , U30268-

random.number [1:10]

## [1] 0.7638508 0.6184876 0.7613730 0.1947867 0.3085335
## [6] 0.7592256 0.8275794 0.5160725 0.2484060 0.4774191

length (unique (random.number) )
## [1] 30268

The last calculation shows that this generator did not cycle before all possible numbers were computed.

The concept of relative primeness plays a role in ensuring that the cycle length for a generator is maximal.
Two integers are said to be relatively prime if there is no integer greater than one that divides them both (that is,
their greatest common divisor is one). For example, 8 and 9 are relatively prime, because the prime factors of 8
are 2 and the prime factors of 9 are 3 The numbers 10 and 12 are not relatively prime, because both numbers are
divisible by 2.

2.2.5 Conditions which prevent premature cycling

An interesting mathematical result concerning cycling in linear congruential pseudorandom number generators is
given by Knuth (1997). It states that the linear congruential sequence defined by m, a, ¢ and z( has cycle length m
if and only if the following hold:
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1. cis relatively prime to m.
2. b= a — 1is a multiple of p, for every prime p dividing m;

3. bis a multiple of 4, if m is a multiple of 4.

Example 2.7 If m =8, a = 5 and xo = 3, and ¢ = 3. Then, b = 4 and the sequence is
3,2,5,4,7,6,1,0,3

which has a cycle of length 8.

The theorem specifies a necessary and sufficient condition for obtaining a maximal cycle, so if the necessary
condition does not hold, cycling will occur prematurely as in the next example.

N

Example 2.8 Ifm =9, a = 5 and x¢g = 3, and c = 3. Then the sequence is
3,0,3
which has a cycle of length 2. If xo = 1, the sequence is
1,8,7,2,4,5,1

which has cycle length 6.

2.2.6 Implementation

The following R function implements the linear congruential method:

rlincong <- function(n, m = 2716, a = 2°8+1 , ¢ = 3, seed) {
X <— numeric (n)
xnew <- seed
for (j in 1:n) {
xnew <- (a*xnew + c)%%m
x[j] <- xnew

}

x/m

Default settings are chosen to satisfy conditions of the theorem: ¢ = 3 and m are relatively prime since they
do not share prime factors, a — 1 is a multiple of 2 which is the only prime which divides m, and b is a multiple of
4 (m is a multiple of 4).

Example 2.9 The following verifies the cycle length at the default settings and with seed 372737

u <- rlincong(2°16-1, seed = 372737)
ull:4]

## [1] 0.6914673 0.7071381 0.7345276 0.7736359
length (unique (u)) - (2716 - 1)
## [1] O

A full cycle was achieved, which is what the theorem predicts.
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2.2.7 Are the simulated numbers adequate for the problem at hand?

Generally, simpler problems will make fewer demands on the quality of the numbers generated, while complex
problems such as those arising in theoretical physics or genomics may be too demanding for even the best of the
currently available generators. Choice of seed turns out to be surprisingly critical.
Consider the generator based on
Tp = Txp_1 mod 17.

Using x¢ = 1, we obtain the following values in the sequence before it begins to cycle:
## 0 [1] 715 3 411 9 12 16 10 2 14 13 6 8 5 1

(Warning! This is not a generator that should be seriouly considered in practice.)

2.2.8 Tossing two fair coins

We will use the rule that a ‘Head’ (H) is generated whenever the generated value is less than 9, and otherwise a
“Tail’ (T) is generated. Thus, we could use the above sequence to generate the following pattern of heads and tails:

## [1] "H" "’I‘" "H" "H" "T" "T" "’I‘" "T" "T" "H" "T" "'I‘" "H" "H"
## [15] "H" "H"

We only require a single consecutive pair of coin tosses, not the entire sequence. Thus, if we request only 2
values from the generator and seed it with the value 1, we get an H-T outcome, while if we seed with the value 7,
we get a T-H outcome, and so on.

Seeds and resulting outcomes (pairs of coin tosses):

## [1] 7 15 3 4 11 9 12 16 10 2 14 13 6 8 5 1

## [1] "H 'I‘" "T H" "H H" "H T" "’I‘ T" "T T" "’I‘ T" "T 'I‘" "T H"
## [10] "H ’I‘" "’I‘ ’I‘" "'I‘ H" "H H" "H H" "H H" "H H"

The frequency distribution for the outcomes is:

##
## HHH T THTT
#4# 5 3 3 5

If one chooses the seed randomly from the set {1,2,...,16}, a pair of heads will occur with probability 5/16
as is the case for a pair of tails. Thus, the generator will give a biased result for this simple problem.

Notice that if one seeds the generator with one of {4,11,9,12,2}, a T-T pair will result, while seeding with
one of {13,6,8,5,15} will yield an H-H outcome. Removing seeds at the extremes (i.e. either too large or too
small) is a simple general strategy that often leads to improved performance. Thus, we could disqualify seeds 2,
4, 13 and 15. Choosing any other seed will result in a pair of coin toss outcomes that exactly follows the required
probability distribution.

2.2.9 Tossing three fair coins

## [1] HH T HH HT H Hll HH H T" "H T T" HT T TH HT T T" HT T T"
## [8] HT T Hll HT H T" "H T TH "T T HH HT H Hll "H H HH "H H H"
## [15] "H H H" "H H T"
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Frequency distribution of outcomes:

##
## HHHHHTHTHHTTTHHTHTTTHTTT
## 3 2 1 2 2 1 2 3

Equally likely outcomes are assured if only one occurrence of each outcome is allowed. Restricting the possible
seeds to the set 1, 3,6,7,9,12, 15, 16} will perfectly produce a set of three independent coin tosses.
There is no way to produce a sequence of four independent coin tosses.

This example highlights the importance of choosing a seed appropriately. In practical situations, this is a
difficult problem. The advice given by ? remains useful.

2.2.10 “Random numbers fall mainly on the planes” (Marsaglia, 1968)

The RANDU pseudorandom number generator is a multiplicative congruential generator with a = 65539 and
m = 231,

Scatterplots of consecutive triples of points:

B\‘ \
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% e
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= ~ 5 U gy X
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©.00.20.40.60.81.0 0 0068
X3 X3

All linear congruential generators have more or less severe forms of this property.

2.3 Testing generators

Traditionally, there were two essential requirements for a good sequence of pseudorandom numbers. First, the dis-
tribution of numbers should be uniform on the interval [0, 1]. Second, the successive values should be sequentially
independent. That is, it should not be possible to predict values in the sequence from other values. In fact, the

paper by O’Neill (2014) summarizes the modern goals of random number generators succinctly. Desirable features
are

* Speed
* Statistical accuracy

* Long cycle length
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« Efficient use of processor

* Portability

* Reproducibility

 Security; robustness against attacks

A number of tests have been developed to investigate the quality of pseudorandom number generators. These
include

* Diehard battery of tests
* BigCrush
* TestUO1

These are all collections of mainly statistical tests. One exception is the spectral test which examines the mini-
mal distance between hyperplanes in successive dimensions (RANDU does poorly on this test in 3 dimensions.)

2.3.1 Histogram

The most straightforward check on the uniform distribution assumption is to plot a histogram of a sample coming
from a random number generator. A perfect-looking rectangular distribution is often a symptom of too much order
in the generator, while gaps in the histogram are also an indicator that the generator is failing to meet the uniform
distribution requirement.

Example 2.10 Sequences of pseudorandom numbers are stored in x1, x2 and x3:

x1l <- rng (1000, a = 32377, m = 32378); x2 <- rng (1000, a = 41, m = 2000)
x3 <— runif (1000)
par (mfrow=e(1l,3)); hist (x1); hist (x2); hist (x3)

Histogram of x1 Histogram of x2 Histogram of x3
o
S - — — 4 4 —
[t} - |
S 4 -
. S — =1
3 g 3 o o) —
c o - c © c
o ™ ] o o
> > S ®
o o o o
o ] o I o
L o L L 1
S ] & S
o - o - o -
[ I I I I ] [ I I I I ] [ I I I I ]
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
x1 X2 x3

Figure 2.6: Histograms of three sets of pseudorandom numbers.

Figure 2.6 displays the histograms of the 3 sequences. x1 fails;, x2 and x3 both appear to be uniform, though
the middle histogram is actually too perfect to be believable.

Sometimes the use of a chi-squared goodness-of-fit test is advocated, but this would usually be a waste of
effort, since a glance at the histogram is all that is really needed to check for uniformity. Furthermore, the more
important and difficult issue is related to the independence of the sequence of values. More care is required to
assess this aspect of a generator.
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2.3.2 Visualizing RNG output with a lag plot

We can get an idea of whether we are generating independent random numbers by plotting successive pairs of
numbers - a lag 1 plot. Specific patterns indicate that the generator is not producing independent numbers. If you
see points lining up, your generator is failing.

Example 2.11 In the first example, we see points lying on clearly separated lines in the lag plot displayed in
Figure 2.7. This generator is very poor.

x <— rng(100,a=15, m=511, seed=12)
lag.plot (x, do.lines=FALSE)
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U o 0.0 é) é)
o o 0 O
o) O
o O ©O o
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—] o) (@] O o)
o O ©O o)
o) O
o ] S S o o ©
o [ [ [ [ I
-0.5 0.0 0.5 1.0 1.5
lag 1

Figure 2.7: Lag plot for a pseudorandom number generator with bad properties.

Example 2.12 By changing the a parameter, we get the result plotted in Figure 2.8.

x <- rng(100,a=31, m=511, seed=12)
lag.plot (x, do.lines=FALSE)

Plotted points appear to be more random in this second example.

Example 2.13 In our third example, we take a much larger value of m, together with a value of a which is in the
order of the square root of m. This kind of combination can lead to better behaviour, and the lag plot picture in
Figure 2.9 confirms this.

x <- rng (100, a=171, m=30269, seed=12)
lag.plot (x, do.lines=FALSE)
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Figure 2.8: Lag plot for a pseudorandom number generator with small m but relatively good properties for very
short sequences.

2.3.3 Autocorrelation

The autocorrelation function, ACF, begins to numerically summarize what can be observed graphically on a lag
plot. The autocorrelation at a particular lag, say m, is the correlation between the n + mth value and the nth value,
or more precisely, the correlation between the vector (z1, ..., Z,—m,) and the vector (T, Tmt1, -« - Tn)-

Autocorrelations, like correlations, can take values between —1 and 1, where positive values are indicative of
the plotted points scattering about a line of positive slope, and negative values are indicative of the plotted points
scattering about a line of negative slope.

Example 2.14 Figure 2.10 shows the first 6 lag plots for one of the sequences generated earlier. In other words,
the figures show plots of the n + 1st elements versus the nth, n + 2st versus the nth, n + 3st versus the nth and so
on.

lag.plot (x2, lag=6)

At lags 1, 2, 3, 4 and 6, it would be hard to predict the current value of x2, but the lag 5 plot shows that the
current value of x2 depends a lot on the value 5 time units earlier.
The autocorrelations for the first 5 lags are:

acf (x2) Sacf[2:6]

## [1] -0.0328 0.0049 -0.1090 -0.1097 0.4575

The values of this autocorrelation function are plotted in Figure 2.11. Note the size of the 5th one. This says
that every 5th value of the sequence is dependent.
The autocorrelations for the first 5 lags for values coming from runif () are:
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Figure 2.9: Lag plot for a pseudorandom number generator with moderate m and relatively good properties for
short sequences.

acf (x3)Sacf[2:6]

## [1] -0.012205 -0.001414 -0.012534 0.000379 0.003676

Again, the autocorrelation function is plotted in Figure 2.12. All ACF values checked are small. This sequence
passes this test.

Note that a severe deficiency of checking the autocorrelations is that they only detect linear forms of depen-
dence and can miss nonlinear dependencies. Thus, they really only serve as a quick way to check many lags at
once; the lag plots have the advantage of highlighting nonlinear dependencies, if they are there. Both methods will
fail to show more complex dependence structures, where, for example, values can be predicted nonlinearly by a
combination of earlier values in the sequence.

Example 2.15 In the 1960’s, the RANDU pseudorandom number generator was very popular. It was a multiplica-
tive congruential generator with a = 65539 and m = 231,
We can generate numbers from this sequence using

n <- 5000
RANDU <- numeric (n)
x <— 123

for (i in 1:n) {
x <— (65539%x) %% (2°31)
RANDU[1] <- x / (2731)

}
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Figure 2.10: Lag plots for the first 6 lags.

par (mfrow=c(1l,2))
hist (RANDU)
acf (RANDU)

2.0

00 04 08

19

According to these simple checks, there does not appear to be a problem, and this is a reason for its temporary
popularity. However, upon more rigorous checking, a serious deficiency was discovered, when one plots a 3-
dimensional version of the lag plot. In other words, plot u, o against u,41 and u,. The following code sets up

the vectors that make up the 3d lag plot:

A <- diag(rep(l,n-1));

A <- cbind (A, rep (0, n))

lagvectors <- matrix (RANDU,

m <- 2
for (j in 1:m) {

nrow=n)

lagvectors <- cbind(lagvectors,

}

lagvectors <- data.frame (lagvectors)
<- c(paste("x",
lagvectors <- lagvectors[—-(l:m), ]

names (lagvectors)

1:

A <- rbind(rep (0,

n-1), A)

A%x%lagvectors|(, j])

(m+1), sep=""))

Here, we have set up an n X n matrix A for which Ax yields a vector of length n whose first element is 0 and

whose remaining elements are x1, . .
remaining elements are x1, .

. Zn_1. Thus, A%z is a vector whose first two elements are 0’s and whose
.., Tn_g. The vectors x, = x, Ty = Ax,x3 = A%z are the basis of the 3-dimensional

lag plot pictured, from two different orientations, in Figure 2.14. Here, we have used the scatterplot3d
function in the scatterplot3d package (Ligges and Mdichler, (2003).
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Figure 2.11: Autocorrelations for the x2 sequence.
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Figure 2.12: Autocorrelations for the x3 sequence.

library (scatterplot3d)

par (mfrow=ec(1l,2))

scatterplot3d(lagvectors$x3, lagvectors$x2, lagvectors$xl,
xlab="x3", ylab="x2", zlab="x1", cex.symbols=.3)

scatterplot3d(lagvectorss$x3, lagvectors$x2, lagvectorss$xl,
xlab="x3", ylab="x2", zlab="x1", angle=150, cex.symbols=.3)

The change in perspective is important, since most views of the data do not reveal anything other than an
apparent random scatter of points - under the given 2-dimensional projection. The perspective taken in the right
panel of Figure 2.14 reveals the difficulty with RANDU: it only produces wy,, Up1, Un+2 triples lying on a small
number of planes in 3-dimensional space.

Better generators provide successive triples that do a better job of filling 3-dimensional space. In fact, one also
desires a generator that will provide successive quadruples that leave only small gaps in 4-dimensional space, and
more generally, successive m-tuples that leave only small gaps in m-dimensional space. The spectral test, which
lies beyond the scope of this book, is designed to find these deficiencies at a given number of dimensions.
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Figure 2.13: Histogram and ACF plots for a sequence of RANDU numbers.

2.3.4 Random forest testing of a pseudorandom number generator

The randomForest function in the randomForest package (Liaw and Wiener, 2002) can be used to set up a
quick and simple approximation to the spectral test. The essential idea behind this test is to set up a flexible
prediction model for successive elements of a sequence generated by a pseudorandom number generator, given
m previous values. If the predictions are consistently inaccurate, the generator can be judged adequate; when the
predictive model is sometimes successful, the generator should be judged a failure.

A quick review of the nature of regression trees and their extension as random forests is necessary before we
describe an implementation of the random forest testing approach for pseudorandom numbers.

Regression trees and random forests

A regression tree is a flexible or nonparametric approach to predictive modelling which is particularly useful
when there are a relatively large number of possible predictors and where the nature of the relationship between
the response and the predictors is very much unknown and not likely linear. The rpart package (Therneau and
Atkinson, 2018) implements a recursive partitioning technique which can produce both classification trees and
regression trees. A classification tree is useful in the case where the response variable is categorical, for example,
binary. Classification trees offer a flexible alternative to logistic regression. Regression trees offer a flexible
alternative to multiple regression.

Example 2.16 Consider the data in table .b3 of the MPV package (Braun and MacQueen, 2019). This data set
concerns gas mileage, vy, for a number of cars, together with information on 11 other variables. In particular, we
note that x10 represents weight and x2 represents horsepower. We can fit the default regression tree to these data
using

library (rpart); library (MPV)
mpg.tree <- rpart(y -~ ., data = table.Db3)

The tree, plotted in Figure 2.15, is the result of executing the following code.
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Figure 2.14: 3-dimensional lag plot of a sample from the RANDU simulator, from two different perspectives.

par (xpd = TRUE)
plot (mpg.tree, compress=TRUE)
text (mpg.tree, cex=.5, use.n = TRUE)

The tree indicates how the partitioning or splitting of the predictor space was undertaken. For weights (x10)
less than 2678 pounds, the gas mileage was predicted to be 29.76 miles per gallon. This split would have been
chosen to minimize the prediction error. Then an additional split was made, for the data set where weights which
are at least 2678 pounds. In this case, when the horsepower (x2) is less than 144, the gas mileage is predicted to
be 20.3, and the prediction is 15.72 when the horsepower is at least 144. Again, this part of the predictor space
was partitioned in order to minimize prediction error. The splitting process was terminated, based on a trade-off
between predictive precision and model complexity. Models that have too many splits or branches tend to over-fit
the data.

As the name implies, a random forest is a random collection of trees. The trees are essentially constructed
from random samples, taken with replacement, from the original sample of observations. This is an example of
a technique called bootstrapping. By averaging the predictions over the entire set of trees, improved stability can
often be achieved.

Example 2.17 We can apply the random forest approach to the car gas mileage data as follows:

library (randomForest)
mpg.rf <- randomForest(y ~ ., data = table.b3[,-4])

Figure 2.16 displays a plot of the actual gas mileages against predictions for both the random forest predictions
and the tree predictions. Whether the random forest predictions are better is not necessarily clear. What is clear is
that the predictions are somewhat finer grained and somewhat more flexible.
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Figure 2.15: Default regression tree for car gas mileage data.

par (mfrow=c(1l,2), mar=c(4, 4, 1, 1))

plot (table.b3Sy ~ predict (mpg.rf), ylab="Actual mpg",
xlab="Predicted mpg")

plot (table.b3Sy ~ predict (mpg.tree), ylab="Actual.mpg",
xlab ="Predicted mpg")
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Figure 2.16: Random forest (left panel) and tree-based (right panel) predictions of car gas mileage.

Testing pseudorandom numbers with random forest prediction

The function rftest () can be used to carry out the test for a given pseudorandom number sequence, coming
from the generator to be tested. Typically, as in the spectral test, one supplies a sequence of m values which
represent the dimensionality of the space to be “filled” by the successive m-tuples of sequence values. The function
constructs the m vectors as in the RANDU example of Section 2.3.3, and the random forest is then used to set up
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a predictive model for values of =, 4., given Typ4m—1, Tntm—2,--.,Zn. Lhe fitting is actual done on one-half
of the data, the so-called training set. The remaining half of the data, the so-called test set, is plugged into the
fitted model to obtain predictions. The actual values of x,,,, are plotted against the predictions, first using the
training set — internal validation and then using the test set — external validation. In both cases, a scatter plot of the
actual values against the predicted values is obtained, with a least-squares line overlaid. A line with positive slope,
particularly on the second plot, is an indicator of failure for the generator. One would not expect a line with a
substantial negative slope, since the poor predictivity from the random forest should only yield random predictions
and not predictions that are negatively correlated with the actual values. Thus, a line with non-positive slope should
be interpreted as a success for the generator. This is coded up in the function rftest which is available in the
MPYV package (Braun and MacQueen, 2019).

library (MPV)

Example 2.18 We start with the cosine sequence discussed in Section ?? to show why such a generator is not in
practical use. The results of the random forest test are pictured in Figure 2.17 using n = 500 and the default of
m = b dimensions.

for (n in 1:500) {
X <— cos (30%*x)
prnumbers[n] <- x

}

rftest (prnumbers)

training data test data
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Figure 2.17: Random forest test for the cosine sequence of Section 2?.

Observe that in both plots, the least-squares line has a substantial positive slope. The random forest model
is making excellent predictions of x5 based on the previous 5 observations. This cosine mapping would not be
useful in producing good approximations to random numbers.

In practice, we should use as large a sample as is practical, and we should look for trouble over a sequence of
m values, starting with 1. In the case of the spectral test, one does not normally go beyond 8 dimensions, but the
random forest approximation can be run at higher dimensions without much difficulty.

Example 2.19 We will check the quality of the default generator in R, using the random forest test, using n = 5000,
and m = 1 and m = 10. It is an easy exercise to try intermediate values of m.
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u <— runif (5000)

Execution of the following scripts yields the plots displayed in Figures 2.18 and 2.19. In both cases, we see that
the least-squares lines are effectively constant; in some cases, there is the appearance of a slightly negative slope,
which we have discussed earlier as an indication that the random forest is really not able to deliver a predictive
model. These plots confirm that, at least for small simulation problems, the default simulator in R is going to work
well. Larger values of n should be considered before making conclusions about larger scale simulations.

rftest (u, = 1)
training data test data
0 (%3]
(] (]
= =
T o ] T o ]
> o > o
o — e ]
[«] — [«}] —
> _ > _
s <9 _ o 9
0 o n o
3 3
0.2 04 06 0.8 0.2 04 06 0.8
predicted values predicted values
Figure 2.18: Random forest test for the default generator in R, using m = 1.
rftest (u, = 10)
training data test data
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Figure 2.19: Random forest test for the default generator in R, using m = 10.

We saw earlier that the RANDU generator has a serious deficiency. Can the random forest test detect this
problem?
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Example 2.20 Since the issue for RANDU occurs when m = 2, we will apply the random forest test using this
value of m.

rftest (RANDU, m = 2)

training data test data
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Figure 2.20: Random forest test for the RANDU sequence, using m = 2.

Figure 2.20 displays the results. As expected, the fitted least-squares line relating the actual sequence values
with the random forest predictions has an obviously positive slope, indicating that the random forest is able to find
a relatively good predictive model for values in this sequence, based on the preceding two values in the sequence.
This result is consistent with the earlier analysis that indicates that the RANDU generator will not produce good
unpredictable numbers.

2.4 Shuffling

Analogous to shuffling a deck of cards, there is a shuffling technique for reducing sequential dependence in a given
sequence of pseudorandom numbers, x.

The shuffling algorithm uses an auxiliary table v(1), v(2), ..., v(k), where k is some number chosen arbitrarily,
usually in the neighborhood of 100. Initially, the v vector is filled with the first £ values of the x sequence and an
auxiliary variable y is set equal to the (k + 1)st value. The steps are:

Extract the index j . Set j + ky/m, where m is the modulus used in the sequence x; that is, j is a random value,
0 < j < k, determined by y.

Exchange. Set y < v[j], return y, and set v[j] to the next member of the sequence x.

The following is an R implementation of shuffling, using the built-in generator to generate the auxiliary se-
quence.

shuffle <- function(n, k = 100, x = runif(n)) {
v <— x[1l:k]
y <— x[k+1]
xnew <— numeric(n - k)
i <=1
while (n > k) {
J <- floor (kxy)+1
y <= v[]l]
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xnew[i] <-
i <-1i+1

v[ijl <= x[k+1]
x[k+1] <- x[n]

n <—- n-1

}

c (v, xXnew)

Example 2.21 Shuffling a deck of 52 playing cards.
We first define a vector containing the 52 different playing cards, using a factor called cards with 52 levels:

a <- 1:52

suits <- c("Spades",
values <- c¢(2:10, "J",

cards <- factor (a)

levels (cards) <- as.vector (outer (values,

cards # sorted

## [1] 2 Spades
## [5] 6 Spades
## [9] 10 Spades
## [13] A Spades
## [17] 5 Hearts
## [21] 9 Hearts
#4 [25] K Hearts
## [29] 4 Diamonds
## [33] 8 Diamonds
## [37] Q Diamonds
## [41] 3 Clubs
#4# [45] 7 Clubs
## [49] J Clubs

## 52 Levels: 2 Spades 3 Spades
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We can shuffle the cards using our shuffle () function:

a <- as.numeric (cards) /53

par (mfrow=c(3,3))
for (i in 1:9) {
ts.plot (a)

a <- shuffle (52,

10, a)

cards[ax53] # shuffled

## [1] J Hearts
## [5] 4 Hearts
## [9] 5 Spades
## [13] 10 Diamonds
## [17] 9 Diamonds
## [21] J Diamonds
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## [25] 6 Hearts 7 Hearts 3 Diamonds 2 Diamonds

## [29] 10 Hearts 7 Clubs 9 Clubs Q Spades

## [33] 7 Diamonds 4 Clubs 4 Diamonds 5 Diamonds

## [37] Q Diamonds 3 Spades J Clubs K Clubs

## [41] 6 Diamonds 4 Spades 8 Diamonds 2 Clubs

## [45] Q Hearts 3 Hearts 5 Clubs 8 Spades

## [49] 10 Clubs A Hearts 2 Spades K Hearts

## 52 Levels: 2 Spades 3 Spades 4 Spades 5 Spades ... A Clubs

Figure 2.21 shows how the original ordering of the numbers from I through 52 gradually takes on more of an
unpredictable appearance as the number of shuffles increases.
Next, we can ask how many times we should shuffle to obtain a reasonably random ordering of the cards:

a <- as.numeric (cards) /53
par (mfrow=c (3, 3))
for (i in 1:9) {

acf (a)

a <- shuffle (52, 10, a)

Figure 2.22 displays the autocorrelations for the shuffled numbers. The autocorrelations appear to die down
after the numbers have been shuffled 6 or 7 times.

The cross-correlation between an n-vector x and another n-vector y, at lag m essentially measures the correlation
between (x1,Z2, ..., Tn—m) and (Y, Ymt1s -« - Yn)-

Example 2.22 We can use the cross-correlation function to see how much dependence occurs between “hands”.
Figure 2.23 contains graphs of the cross-correlations between the original ordering of the 52 numbers and the
orderings following each of 9 successive shuffles of those numbers.

b <- a
par (mfrow=c (3, 3))
for (i in 1:9) {

a <- shuffle (52, 10, a)
ccf(a, b)

Comment about weaknesses - see Anderson
Anderson (1990) discusses the disadvantages of shuffling.

2.5 Fast computation

Anderson (1990) provides details on how to vectorize algorithm congruential generators. Use of the modpower ()
function in the numbers package (Borchers, 2021) enables us to do this in R.

library (numbers)

A vectorized version of rng () is as follows:
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rngV <- function(n, a, cc, m, seed, L) {
X <— numeric (n)
al <- numeric (L+1)
ell <- 0:L
for (i in ell) {
ai[i+l] <- modpower(a, ell[i+l], m)

cli <— (ccxcumsum(ai[—(L+1)]))%%m
al <- aif[-1]
x[1:L] <— (aixseed + ci)%%m
M <- ceiling(n/L)
for (j in 1:(M-1)) {
seed <- x[j*L]
X[(J*L+1) : ((jJ+1)*L)] <- (aixseed + ci)%%m

}

return(x[l:n]/m)

The multiplicative congruential generator with modulus m = 2'° — 1 and a = 701 has a cycle length of 2% —2
as shown below.

length (unique (rngV (524286, 701, 0, 524287, 1, 700)))

## [1] 524286

We can check that the vectorized generator produces the exact same sequence as the sequential version by
computing the pairwise differences of the results and computing the mean of the absolute difference.

mean (abs (rngV (524286, 701, 0, 524287, 1, 700) - rng(524286, 701, 524287)))

## [1]1 O
The time taken to generate the entire cycle with the vectorized version is about 25% of the sequential version.

system.time (rngV (524286, 701, O, 524287, 1, 700))

## user system elapsed
## 0.024 0.000 0.025

system.time (rng (524286, 701, 524287))

## user system elapsed
## 0.132 0.000 0.133

2.6 Types of generators

1. Congruential (multiplicative, linear; recursive) generators
2. Multiple-recursive generators (these use x,—1,Zp—2,..., T,k tO generate ,)

3. Modulo 2 (F5, XOR) linear generators (numbers are produced bitwise)
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4. Linear feedback shift register generators (e.g. Mersenne Twister(s)?) These are a special case of the F;
generators
5. Multiply-with-carry generators

6. Combination generators

2.6.1 Combination Generators

Mathematical folklore, hinted at by Wichmann and Hill (1982): if Uy, Us, . . ., U,, are independent uniform random
variables on (0, 1), then the fractional part of V' = " | U is also uniformly distributed on (0, 1). See also Miller
and Nigrini (2006).

Sketch of the Proof:

* When n = 2, calculate P(V < v) by conditioning on the value of [U; + Us).
* When n > 2, use induction, with facts like [v + [2]] = [v] + [2].

Details are provided in a later section of this chapter.
Examples of combination generators include Super-Duper and Wichmann-Hill.

2.6.2 Combination Generators

Numerical demonstration (n=3):

ul <— runif (10000

); u2 <— runif (10000); u3 <— runif (10000)
hist ((ul+u2+u3) %$%1)

Histogram of (ul + u2 + u3)%%1

1 T

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

0 500

Frequency

(ul + u2 + u3)%%1

2.6.3 Combination Generators: Wichman and Hill

For:=1,2,...,
z; = (171z;) mod 30269
Yi (172y;) mod 30307
z; = (170z;) mod 30323
U, = (x;/30269 + y;/30307 + 2;/30323) mod 1.0

Example of use:

2runifinR.
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RNGkind ("Wich")
runif (5)

## [1] 0.437343 0.318333 0.870639 0.953454 0.345549

2.6.4 Combined multiple recursive generator

The combined multiple recursive generator (cmrg) of L’Ecuyer (1996) is based on the difference of two underlying
generators which are constructed from

ZTn = (@1Tn—1 + G2Zn—2 + a32,—3) mod my

Yn = (blynfl + b2yn72 + b3yn73> mod ma

where a; = 0, ay = 63308, a3 = —183326, by = 86098, by = 0, by = —539608, m; = 231 — 1 = 2147483647
and mo = 2145483479.
The simulated numbers are then given by

zn = (zy, — yn) mod my.

Theory: the fractional part of U; — U, is uniformly distributed on (0, 1).

2.6.5 “It’s high time we let go of the Mersenne Twister” (Vigna, 2019)

The Mersenne Twister is actually a collection of generators, all of which are some form of shifted F5, generator.
The original version uses k = 19937, and since 2'9937 is a Mersenne prime, it has maximal cycle length: 219937 —1,
Problems with the Mersenne Twister have been evident since its inception.

« It fails two statistical tests in the BigCrush test suite.
* It wastes space in the processor cache since k is unnecessarily excessive.
* Much faster generators are available now.

* These and other problems are described by Vigna (2019).

2.6.6 Seeing the problem for ourselves

Vigna (2019) describes a specific example involving the characteristic polynomial of an Erdos-Renyi graph to
numerically demonstrate that the generator is producing too many 0’s in the trailing bits. A more accessible
example is as follows.

Define the random variable X to be the maximum runlength for Heads generated from a sequence of 32 fair
and independent coin tosses. For each U generated by the Mersenne Twister, the following steps can be used to
carry out the transformation defined by X = g(U).

» Convert U to its binary representation and retain the leading 32 binary digits.
e Return the maximum runlength of 0’s in the binary representation.

* Calculate X,, = g(Up,) forn = 1,2,...,10000 using R’s Mersenne Twister and Wichmann-Hill

* Calculate Y,, = g(1 — U,,) (maximum runlengths for Tails)
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Mersenne Wichmann-Hill
o — e i Lo : — E—
| | | |
Heads Tails Heads Tails

2.6.7 Accessing better generators in R

Wickham (2014) makes a compelling case for the use of the Rcpp facility in R to interface with C++ and the GSL
library (The GSL Team, 2021) to speed up code, particularly random number generation.

To install ReppGSL (Eddelbuettel and Francois, 2022), you need to have a working version of GSL. On a
computer running a Linux (Debian) operating system, this can be installed using

sudo apt install libgsl-dev

The package gs! (Hankin, 2006) provides a facility for accessing these generators without needing to program in
C++.
Setting up the cmrg generator (L’ Ecuyer, 1996) is as follows:

library (gsl)
r <- rng_alloc ("cmrg")
rng_set (r, 100)

## [1] 100
rcmrg <- function(n) rng uniform(r, n)

We can then use the function rcmrg () in the same way that we would use runi f () . For example, generating
10 numbers proceeds as

remrg (10)

## [1] 0.75100266 0.27632556 0.80290789 0.79234885 0.00991752
## [6] 0.90312322 0.14127554 0.44023898 0.50391344 0.88495743

2.6.8 Luxury generators

The luxury random number generators or ranlux algorithms (James, 1994) are also available in GSL. One of the
faster ones is ranlxs0.

r <- rng_alloc("ranlxsO0")
rng_set (r, 100)

## [1] 100

rlxs0 <- function(n) rng uniform(r, n)
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rlxs0 (5)

## [1] 0.8630 0.9370 0.1817 0.5500 0.4464

2.6.9 Permuted Congruential Generators (PCG)

O’Neill (2014) reconsidered the linear congruential generator but permuted the low order bits in the output to
create a fast but more secure and statistically stronger set of generators. The PCG family of generators (O’Neill,
2014) has been ported into R using the Rcpp function through the dgrng package (Stubner, 2021).

library (dgrng)
The pcg64 generator:

dgRNGkind ("pcg64")
dgrunif (5)

#4# [1] 0.9442 0.6557 0.6191 0.8357 0.3454

2.6.10 XOR shift generators

The dgrng package also contains ports to the Xoshiro256+ and Xoroshirol28+ generators (Blackman and
Vigna, 2021). The latter is the fastest generator available in the dgrng package.

dgRNGkind ("Xoshiro256+")
dgrunif (4)

## [1] 0.6200 0.7356 0.6089 0.9021

dgRNGkind ("Xoroshirol28+")
dgrunif (4)

## [1] 0.8794 0.9823 0.3808 0.9302

2.6.11 Timing comparisons

How does the speed of these methods compare with R’s implementation of the Mersenne Twister?.

dgRNGkind ("pcg64")
microbenchmark (runif (2e6), rcmrg(2e6), rlxsO0(2e6), dqrunif (2e06))

## Unit: milliseconds
#4 expr min 1lg mean median uq max neval

14.44 14.69 19.79 15.53 22.90 91.23 100

## runif (2e+06) 33.06 33.50 44.07 36.11 53.29 131.43 100

#4 rcmrg (2e+06) 62.72 63.80 72.52 65.06 74.15 117.18 100

## rlxs0(2e+06) 62.65 63.68 76.41 65.29 93.45 141.98 100
( )

## dgrunif (2e+06

dgRNGkind ("Xoshiro256+")
microbenchmark (dgrunif (2e6))
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## Unit: milliseconds
## expr min lg mean median uq max neval
## dgrunif (2e+06) 13.84 18.56 21.82 22.42 22.6 88.75 100

dgRNGkind ("Xoroshirol28+")
microbenchmark (dgrunif (2e6))

## Unit: milliseconds
## expr min 1lg mean median uq max neval
## dgrunif (2e+06) 13.36 13.56 15.94 13.69 14.21 67.98 100

2.6.12 Xorshift128 is fast but ...

Machine learning methods are now being used to crack more sophisticated generators (Hassan, 2021), such as the
Xorshift128 generator

Security of generators is becoming a more important area of research, though there are early results on cracking
generators>

Exercises

1. To see that computation of trigonometric functions is time-consuming is not completely obvious because of
the way in which these functions are computed. The computation of sin(x) is often hard-coded on to the
CPU and accessed from there by the C compiler, and the algorithm used to calculate sin(x) is not simply a
straightforward Taylor expansion. Run the following code to compare the speed of the four functions below.

((32678%x)%$%33271) /33271
((32679*x + 141)%%32768) /32768
x — 0.166667+x"3 + 0.00833+x"5 - 0.00019+x"7 + x"9%2.6019%e-6

fl <- function (x)
x)
x)
X) sin (x)
x)
f1

(
f2 <— function (
£f3 <— function (
f4 <- function (
f5 <- function
microbenchmark (

x - x"3/6 + x°5/120 - x"7/5040 + 2.6019%e-6%x"9
(0.71), £2(0.71), £3(0.71), £4(0.71), £5(0.71))

## Unit: nanoseconds

## expr min 1g mean median uqgq max neval

## f£1(0.71) 481 511 32204 526.5 641.0 3156158 100

## f£2(0.71) 500 531 39453 546.5 626.5 3853827 100

## £3(0.71) 561 591 52717 611.0 646.5 5186857 100

## f£4(0.71) 371 421 11860 431.0 471.0 1129438 100

## f£5(0.71) 551 601 54000 631.0 671.0 5322601 100
4

£3(x) is a quick and accurate approximation to sin(z).

2. Consider the following iteration scheme:

2x, 16
Tnt1 = f(zn) = 3 T2
where z is the initial value, say, o = 28.

(a) Plot the graph of the function f(z), for x € [1,5] and overlay the straight line with intercept 0 and
slope 1. Does f(z) have a fixed point? Solve the equation 2z = f(x) for z to determine its value.

3Marsaglia (2003) was aware of a simple method to crack LCGs already in the 1970s. His method requires only a few numbers and uses
determinants of 2 X 2 matrices. **Provide Details**
4See (vegesm, 2024) for details.
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(b) Using a for loop in R, run 10 steps of the proposed scheme, printing out the value of x,, at each step.

(c) Based on your analysis, could the proposed scheme lead to a useful pseudorandom number generator?
3. Consider the following iteration scheme:
Tpt1 = flan) i=x, +Te” 7 — 1
where x is the initial value, say, o = 2.

(a) Plot the graph of the function f(z), for z € [0, 5] and overlay the straight line with intercept 0 and
slope 1. Does f(x) have a fixed point? Solve the equation = f(z) for z to determine its value.
(b) Using a for loop in R, run 10 steps of the proposed scheme, printing out the value of x,, at each step.

(c) Based on your analysis, could the proposed scheme lead to a useful pseudorandom number generator?

4. Consider the following iteration scheme:

Tn+1 = ,f(xn) = — —

where x is the initial value, say, ¢y = 0.5.
(a) Plot the graph of the function f(x), for « € [0.1, 10] and overlay the straight line with intercept 0 and
slope 1. Does f(x) have a fixed point?
(b) Using a for loop in R, run 10 steps of the proposed scheme, printing out the value of x,, at each step.

(c) Based on your analysis, could the proposed scheme lead to a useful pseudorandom number generator?

5. Consider the following iteration scheme:

T, 24.5
Tny1 = f(@n) = - —

d1
5 = mo

where x is the initial value, say, ¢ = 0.5.
(a) Plot the graph of the function f(x), for z € [0.01, 1] and overlay the straight line with intercept 0 and
slope 1. Does f(x) have a fixed point?
(b) Using a for loop in R, run 10 steps of the proposed scheme, printing out the value of x,, at each step.
(c) Based on your analysis, could the proposed scheme lead to a useful pseudorandom number generator?
6. Construct a function which takes n as an argument and implements the pseudorandom number generator
iteration for the preceding question, returning, as output, a vector of length n. Conduct the basic checks

on the quality of this generator? If it passes those basic checks, apply the random forest test to determine
whether this generator could be used, at least in small simulations, using up to 2000 numbers.

7. Tt is possible to generate cycles of length 1 in a linear congruential generator. Consider the generator of
Example 2.8 and observe its behaviour when zg = 6.

8. Which of the following linear congruential pseudorandom number generators have maximal cycle length?

(@) a=1025,c = 27,m = 23
(b) a =1025,c = 54, m = 23!
(c) a=1025,c = 375,m = 23!
(d) a=10241,c = 375, m = 23!
9. Run basic checks on each of the generators from the previous question to determine whether any are obvi-

ously defective. For any that aren’t, apply the random forest test for m < 10 as a further check. Do you
think any of these generators could be used, at least for small problems?



36

CHAPTER 2. GENERATING AND TESTING PSEUDORANDOM NUMBERS

10. Write an R function that implements the Fibonacci pseudorandom number generator, taking n and x0 as the

11.

12.

13.

arguments and returning a vector of n pseudorandom numbers. Run the basic tests as well as the random
forest test to assess the quality of this generator.

Consider the following random number generator which is based purely on shuffling an initially ordered
sequence.

a <— (1:1000)/1001
for (i in 1:20) {

a <- shuffle (1000, 50, a)
}

a

(a) Test the sequence for uniformity. Write out your conclusion clearly.
(b) Check the autocorrelations. Is there any indication of sequential linear dependence?

(c) Construct a lag plot as a way of applying the spectral test in two dimensions. What do you conclude?
What would you predict about the 51st number if you knew the 50th number was 0.5?

Repeat the previous question, but start with a being the first 1000 numbers generated from a multiplicative
congruential generator with b = 171 and m = 30269. Also, check the autocorrelations for the multiplicative
generator and compare with the performance after shuffling; does shuffling help?

Write an R function which applies the shuffling algorithm to output from the RANDU generator. Run the
random forest test on sequences coming from the new generator to determine if you have an improved
generator.
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Figure 2.21: Trace plots for 9 successive shuffles of a deck of 52 numbers (representing playing cards in an ordinary

deck).
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Figure 2.22: Autocorrelations for 9 successive shuffles of a deck of 52 numbers (representing playing cards in an

ordinary deck).
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Figure 2.23: Cross-correlations between original ordering and first 9 orderings of a shuffled deck of 52 numbers
(representing playing cards).
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