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Modelling Continuous Data (Cont’d)

Distributions based on the Normal: χ2, t and F
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Random Variables Constructed from Normals

Construction starts with the standard normal random variable

• Let Y be a normal random variable with mean µ and standard
deviation σ

•

Z =
Y − µ
σ

(1)

is a standard normal random variable.
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Transforming Normal to Standard Normal

Check standardization by simulation:

X <- rnorm(1000, mean =3, sd = 2); Z <- (X-3)/2

par(mfrow=c(1, 2))

hist(X, freq=FALSE); hist(Z, freq=FALSE)

curve(dnorm(x), -3, 3, col=2, add=TRUE)
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The distribution of Z is identical to that of X, therefore normal. N(0,1) pdf curve
matches.
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The χ2 Random Variables

• Squaring Z leads to a χ2 random variable on 1 degree of freedom.

• Note that

E[Z2] = 1 (2)

 a χ2 random variable on 1 degree of freedom has expected value
1.

On the next slide, we check that Z2 is χ2 by simulation, using dchisq().
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The χ2 Random Variables

Y <- Zˆ2

hist(Y, freq=FALSE)

curve(dchisq(x, df = 1), 0, 6, add=TRUE, col=2)
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χ2 random variables can be generated using rchisq():

rchisq(5, df = 1)

## [1] 0.5790044 3.7902630 2.0388091 0.3716699 0.2288695
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The χ2 Random Variables

• If Z1, . . . , Zn is a sequence of n independent standard normal
random variables, then

X =
n∑

j=1

Z2
j (3)

is a χ2
(n) random variable on n degrees of freedom.

•

E[
n∑

j=1

Z2
j ] =

n∑
j=1

E[Z2
j ] = n (4)
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The χ2 Random variables

1000 simulated values of X for the case where n = 7

X <- rchisq(1000, df = 7)

hist(X, freq = FALSE, main = " ")

curve(dchisq(x, df = 7), from = 0, to = 25, add = TRUE)
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The F random variable

If X1 and X2 are independent χ2 random variables on m and n degrees
of freedom, respectively, then

F =
X1/m

X2/n
(5)

is an F random variable on m and n degrees of freedom. m is
sometimes referred to as the numerator degrees of freedom, and n is the
denominator degrees of freedom.
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The F random variable

1000 simulated values of F for the case where m = 3 and n = 7, F(3,7).

F <- rf(1000, df1 = 3, df2 = 7)

hist(F, freq = FALSE, ylim = c(0, 0.7), main = " ")

curve(df(x, df1 = 3, df2 = 7), from = 0, to = 15, add = TRUE)
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The t random variable

Suppose Z is a standard normal random variable and suppose X is a χ2

random variable on n degrees of freedom, then

T =
Z√
X/n

(6)

is a t random variable on n degrees of freedom, provided that Z and X
are independent of each other.
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The t random variable

1000 simulated values of t for the case where n = 7

T <- rt(1000, df = 7)

hist(T, freq = FALSE, ylim = c(0, .5), main = " ")

curve(dt(x, df = 7), from = -5, to = 5, add = TRUE)
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Studentizing yields a t random variable

• Ȳ is normally distributed with mean µ and variance σ2/n, if the
underlying sample consists of n uncorrelated normal random
variables with common mean µ and common variance σ2.

• We will demonstrate empirically that Ȳ and S2
Y are independent

• (n− 1)S2
Y /σ

2 is a χ2
(n−1) random variable

• We will now show by simulation that

Ȳ − µ
SY /
√
n

(7)

is a t random variable on n− 1 degrees of freedom.
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Simulation of Distribution of t Statistic

Let us consider a random samples of n = 20 normal random variables,
each with mean 3 and standard deviation 2, and let us draw 1000 such
samples.

We will show that (X̄ − µ)
√
n/S has a t distribution on 19 degrees of

freedom:

m <- 1000; n <- 20; sigma <- 2

# m samples of size n:

Z <- matrix(rnorm(m*n, mean = 3, sd = sigma), nrow=n)

Sz <- apply(Z, 2, sd); xbar <- apply(Z, 2, mean)

T <- sqrt(n)*(xbar - 3)/Sz # t statistics

T[1:5] # first 5 t statistic values

## [1] -0.2478585 -0.2443742 1.5762034 0.3657780 1.4227428

These are scattered about 0.0.
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Independence of the Sample Mean and Standard Deviation

Development of t and F statistics only worked because of independence
of the sample mean and standard deviation.

For normally distributed samples, the sample mean and standard
deviation are independent.

We can see evidence for this from simulated data. Let us consider a
samples of n = 20 uncorrelated standard normal random variables, and
let us draw 1000 such samples. Here is a way to do this:

m <- 1000; n <- 20

Z <- matrix(rnorm(m*n), nrow=n)

zbar <- apply(Z, 2, mean); Sz <- apply(Z, 2, sd)



../../../aerial-front.jpg

../../../ubc-crest-eps-converted-to.pdf
Independence of the Sample Mean and Standard Deviation

plot(Sz ˜ zbar)
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No pattern. It appears to be impossible to predict the standard deviation from the
sample mean for normal data.
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Dependence of the Sample Mean and Standard Deviation

For non-normal data, the picture is different. The sample mean and
standard deviation are no longer independent. t and F statistics will no
longer be accurate.

m <- 5000

Z <- matrix(rt(m*n, df=2), nrow=n) # t data on 2 df

zbar <- apply(Z, 2, mean); Sz <- apply(Z, 2, sd)

plot(Sz ˜ zbar)
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Clear pattern. The standard deviation is quite predictable from the sample mean for
averages of t random variables.
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Confidence Intervals for the Mean

Given data of the form X1, X2, . . . , Xn which are a random sample of
independent normal random variables from a normal population with
mean µ and variance σ2, we want to estimate µ with a confidence
interval.

We will use the usual statistical notation for the sample mean:

X̄ =
1

n

n∑
i=1

Xi

and for the sample variance:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.
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Frosted Flakes Example

Two Methods of Measuring Sugar Content:

1. Lab Analysis - slow, but accurate

2. High Performance Liquid Chromatography (HPLC) - fast,

... but is HPLC accurate?

Measurements of each type were taken on 100 frosted flakes samples ...
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Frosted Flakes Measurements

FFdiff <- scan("FFdiff.txt")

length(FFdiff) # how many sample elements?

## [1] 100

FFdiff[1:10] # first 10 observations

## [1] -1.2 2.7 1.1 -1.8 -2.8 1.1 2.7 1.9 3.3 3.1
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Frosted Flakes Measurements

hist(FFdiff, main = "Frosted Flakes Sugar Data", xlab =

"Lab - HPLC Differences")
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Frosted Flakes Measurements

qqnorm(FFdiff, main = "Frosted Flakes Sugar Data")

qqline(FFdiff)
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What is the expected value of the difference (µ = E[X])?

Answer: We don’t know.

Estimate: x̄ = .622.

How much error is there in this estimate?

Standard Error of Estimator:
√

Var(Estimator)

Standard Error of X̄:
√

Var(X̄) = σ√
n

.

Estimated Standard Error (S.E.): s/
√
n = 1.98/10 = .198.
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Example (cont’d)

The approximate probability that X̄ differs from µ by less than 2
standard errors is

P (−2S.E. < X̄ − µ < 2S.E.) =

P (−2 < Z < 2) = .9772− .0228

= .9544

(X̄ is approximately normal with mean µ and variance σ/n, if n is large
enough.)

since

pnorm(2) - pnorm(-2)

## [1] 0.9544997
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Conclusion

We can be 95.44% confident that the true expected value of the
difference in sugar content measurements lies within 2 S.E. of .622:

.622± .396.

This is an example of a 95.44% confidence interval.
We conclude that HPLC is not accurate. Calibration is required, if HPLC
is to be used.
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Confidence Interval Formula (Large n)

n independent measurements taken from a population with expected
value µ and variance σ2.

If n is large, then an approximate 100%(1− α) confidence interval for µ
is given by

x̄± zα/2
s
√
n

where zα/2 is defined so that

P (Z > zα/2) = α/2

e.g. z.2/2 = 1.28 since

1 - pnorm(1.28) # Obtain 1.28 using " > 1 - qnorm(.1) "

## [1] 0.1002726



../../../aerial-front.jpg

../../../ubc-logo.png
Exercise.

Find a 95% confidence interval for the expected difference in sugar
content measurement.

α = .05 z.025 = 1.96 from

qnorm(1 - .025)

## [1] 1.959964

The 95% c.i. for µ is given by

x̄± z.025S.E. = .622± 1.96(.198) = .622± .388
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Exercise.

Find a 90% confidence interval for the expected difference in sugar
content measurement.

α = .1

z.05 = 1.645 from

qnorm(1 - .05)

## [1] 1.644854

The 90% c.i. for µ is given by

.622± 1.645(.198) =

.622± .326
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A Small Sample Confidence Interval for µ

Define the upper percentile of the t distribution as tα,ν in

P (T > tα,ν) = α.

Here T has a t distribution on ν degrees of freedom. Use
qt(1-alpha, nu).

Then we can say that

P

(
−tα/2,n−1 <

X̄ − µ
S/
√
n
< tα/2,n−1

)
= 1− α.
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A Small Sample Confidence Interval for µ

Therefore,

P
(
X̄ − tα/2,n−1S/

√
n < µ < X̄ + tα/2,n−1S/

√
n
)

= 1− α.

and (
X̄ − tα/2,n−1S/

√
n, X̄ + tα/2,n−1S/

√
n
)

(8)

defines a 1− α confidence interval for µ.
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Example: Small Sample Confidence interval for µ

Find a 95% confidence interval for the expected value of concentration
measurements taken from a chemical process. Sample measurements
are

204 190 202 207

204 202 201 195
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Example: Small Sample Confidence interval for µ

If X denotes a concentration measurement, then x̄ = 201., s = 5.50,
and n = 8 so a 95% confidence interval for µ = E[X] is

x̄± t.025,7
s√
8

= 201± 2.365(5.5)/
√

8

= 201± 4.60

since

qt(1 - .025, 7)

## [1] 2.364624
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Application to Monte Carlo Integration

Suppose g(x) is any function that is integrable on the interval [a, b].

The integral ∫ b
a
g(x)dx

gives the area of the region with a < x < b and y between 0 and g(x)

(where negative values count towards negative areas).

Monte Carlo integration uses simulation to obtain approximations to
these integrals. It relies on the law of large numbers.
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Monte Carlo Integration

This law says that a sample mean from a large random sample will tend
to be close to the expected value of the distribution being sampled.

If we can express an integral as an expected value, we can approximate
it by a sample mean.

We can assess the error in the simulation using the standard error and a
confidence interval.
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Monte Carlo Integration

For example, let U1, U2, . . . , Un be independent uniform random
variables on the interval [a, b]. These have density f(u) = 1/(b− a) on
that interval. Then

E[g(Ui)] =
∫ b
a
g(u)

1

b− a
du

so the original integral
∫ b
a g(x)dx can be approximated by b− a times a

sample mean of g(Ui).
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Example

To approximate the integral
∫ 1
0 x

4dx, use the following lines:

u <- runif(100000)

mean(uˆ4) # Compare with the exact answer, $0.2$

## [1] 0.2018032

Calculate the standard error.

SE <- sd(uˆ4)/sqrt(100000); SE

## [1] 0.000847033

A 95% confidence interval for the integral is

mean(uˆ4) + c(-1.96, 1.96)*SE

## [1] 0.2001430 0.2034634
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Example

To approximate the integral
∫ 5
2 sin(x)dx, use the following lines:

u <- runif(100000, min = 2, max = 5)

mean(sin(u))*(5-2) # true value can be shown to be -0.700.

## [1] -0.7073143

Calculate the standard error.

SE <- sd(sin(u)*(5-2))/sqrt(100000); SE

## [1] 0.006199215

A 95% confidence interval for the integral is

mean(sin(u))*(5-2) + c(-1.96, 1.96)*SE

## [1] -0.7194648 -0.6951639
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Multiple Integration

Now let V1, V2, . . . , Vn be an additional set of independent uniform
random variables on the interval [0,1], and suppose g(x, y) is now an
integrable function of the two variables x and y. The law of large
numbers says that

lim
n→∞

n∑
i=1

g(Ui, Vi)/n =
∫ 1

0

∫ 1

0
g(x, y)dxdy

with probability 1.

So we can approximate the integral
∫ 1
0
∫ 1
0 g(x, y)dxdy by generating two

sets of independent uniform pseudorandom variates, computing
g(Ui, Vi) for each one, and taking the average.
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Example

Approximate the integral
∫ 10
3

∫ 7
1 sin(x− y)dxdy using the following:

U <- runif(100000, min = 1, max = 7)

V <- runif(100000, min = 3, max = 10)

mean(sin(U - V))*42

## [1] 0.1160502

Calculate the standard error.

SE <- sd(sin(U-V)*42)/sqrt(100000); SE

## [1] 0.09382326

A 95% confidence interval for the integral is

mean(sin(U-V))*42 + c(-1.96, 1.96)*SE

## [1] -0.0678434 0.2999438

The factor of 42 = (7− 1)(10− 3) compensates for the joint density of U and V being
f(u, v) = 1/42.


