
First Steps to R Packages

W. John Braun, UBC

Workshop - SSC Student Conference

May 28, 2022

1

First Steps to Writing a Package

We will go through the basic steps of constructing a package, via an
example where 4 functions and 1 data set are to be combined into a
single package and prepared for submission to CRAN.

The functions and data set will relate to the two-component mixture
distribution having density function

f(x) = pf1(x) + (1− p)f2(x)

where p ∈ (0,1), f1(x) and f2(x) are pdfs of non-central t random
variables.

The t random variables are governed by a non-centrality parameter ncp
which locates their center and by the number of degrees of freedom df.

2

The package functions

The functions that will make up the package are designed to

• simulate the random variables (rtmix())

• calculate quantiles (qtmix())

• calculate probability densities (dtmix()) and

• calculate cumulative probabilities (ptmix())

3

The functions

The random variate generator: rtmix()

rtmix(5, df = c(4, 7), ncp = c(-1, 5), PI = .24)

[1] -0.7637152 3.8608394 5.7320305 7.2167542 5.8635216

5 randomly generated values from the mixture distribution

• with 4 and 7 degrees of freedom

• with component means of -1 and 5

• where the first component has probability 0.24, i.e. p = 0.24

4

The functions

The quantile function: qtmix()

qtmix(c(.25, .75, .9), df = c(4, 7), ncp = c(-1, 5),

PI = .24)

[1] 2.453922 6.096464 7.806849

The 25th, 75th and 90th percentiles of the mixture distribution.

5

The functions

The probability density function calculator: dtmix()

curve(dtmix(x, df = c(4, 7), ncp = c(-1, 5), PI = .24),

from = -5, to = 15, ylab = "f(x)")

−5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

x

f(
x)

A plot of the probability density curve of the mixture distribution.
6

The functions

The cumulative distribution function calculator: ptmix()

curve(ptmix(x, df = c(4, 7), ncp = c(-1, 5), PI = .24),

from = -5, to = 15, ylab = "F(x)")

−5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
(x

)

A plot of the cdf curve for the mixture distribution.
7

The data

The data file is called simdata:

str(simdata)

'data.frame': 200 obs. of 2 variables:

$ x: num -0.043 -1.211 -1.079 -0.383 -1.381 ...

$ y: num -0.748 -2.713 -2.518 -3.78 -2.62 ...

8

Building the package directory

Since the functions concern
a 2-component mixture of t

random variables, we name
the package tmix.

Our first step is to create a
package directory which has
that name.

9

Building the package directory

Within the tmix directory, we
require the following:
• A man directory.

We need at least one, usually
both, of the following
• An R directory.
• A data directory.

10

Building the package directory

Within the tmix directory, we also minimally require the following text
files:

• A DESCRIPTION file.

• A NAMESPACE file.

11

Building the package directory - automatic method

You can also construct the package directories from within R or RStudio
using the package.skeleton function. This function is built into the
default R distribution.

You need at least one function or data object in your workspace in order
to use this function.

Start with only one or two objects and complete the build and check
process on a package that only contains them. Then gradually add
functions and data to your package, rebuilding and rechecking at each
stage. This will make debugging easier and faster.

12

Building the package directory - automatic method

Here, I am starting with one function and one data object in the
workspace.

13

Building the package directory - automatic method

The command package.skeleton("tmix") creates the directory
structure with the beginnings of the files but just for the two objects. I
need to add in the other three objects, one at a time, later.*

*Watch the award-winning 19-second silent movie packageSkeleton.mp4 to see the com-
mands in action.

14

Building the package directory - automatic method

15

Building the package directory - automatic method

The third and fourth * points can be ignored unless you are doing
something more sophisticated. Writing R Extensions can be found on
the CRAN site. You do need to consult this.

16

Building the package directory - automatic method

17

Building the package directory - automatic method

18

Cleaning up the man file - automatic method

The contents of simdata.Rd
should be changed to:

But we’re getting ahead of ourselves.
19

The DESCRIPTION file

Possible contents for the DESCRIPTION are as follows:

The contents of the Description should all be on one line. Multiple lines are used here for display
purposes only.

20

The NAMESPACE file

This file is needed so that you don’t have to worry that the names you
choose for your functions or data sets will conflict with names of
functions and data sets from other packages.

The contents of NAMESPACE for this example:

importFrom("stats", "qt", "dt", "pt", "rt", "rbinom")

exportPattern(".")

export("dtmix", "ptmix", "qtmix", "rtmix")

We have not included our data file in the export list, only the functions.

We have included all 4 of our functions in the export list.

If we had held one back, the package user would not have direct access
to that function.

21

The R and data directories

We create four files in the R subdirectory, calling them

• qtmix.R
• rtmix.R
• dtmix.R
• ptmix.R

The contents of these files are the corresponding
functions.

The data, stored in a file named simdata.R will be copied into the data
subdirectory.

22

The help directory: man

The man directory will contain 5 files:

• qtmix.Rd
• rtmix.Rd
• dtmix.Rd
• ptmix.Rd
• simdata.Rd

Here, we will construct those
files manually.
Optionally, you can include a
help file for the package it-
self called tmix-package.Rd.
This gives an overview of the
package.

You can avoid some of this work by using the roxygen2 package
(Wickham et al, 2019).

23

The help directory: man

The contents of
qtmix.Rd are:

24

The help directory: man

Most of the contents of qtmix.Rd are required, with the exception of the
following: details, seealso, references, author and examples.

These options are strongly recommended, since the more detail that is
provided, the better.

For a list of keywords that you might use, try

RShowDoc("KEYWORDS")

25

Other pieces of a package

The qtmix() function invoked a Newton-Raphson iteration to solve the
required inverse problem.

Since this iteration requires a loop, it may have been better to write the
code into a C or Fortran program that would be called from R.

If this had been done, the external code would be written in the form of a
subroutine or collection of subroutines and stored in an additional
directory called src.

Special commands are required within the R functions (e.g. qtmix())
which would need to access the external code. The R manual has more
information on this.

Documentation for the package itself is also recommended, as is the
creation of vignettes, which describe the package in action.

26

Building, checking and submitting

Once the pieces of the package are assembled, it is necessary to build
the package. In RStudio, this is fairly straightforward.*

At the command line (Mac, Linux or Cygwin in Windows), we would type

R CMD build tmix

To check that the package components are properly constructed, we
next type

R CMD check tmix

It is usually advisable to build and check the package as it is being
constructed, instead of waiting until all the pieces have been assembled.

*See the 99 second silent movie called RStudiobuildCheck.mp4 for checking and building a
copy of the package called tmix2.

27

Building, checking and submitting

Before submitting the package to CRAN, we need to do a more thorough
check as follows:

R CMD check --as-cran tmix

This last check is to be done using the most recent development version
of R. Before submitting to CRAN, the submittor should check the R
manual to ensure that all requirements have been met.

The final steps in the submission can be carried out at
https://cran.r-project.org/submit.html.

Alternatively, and maybe preferably, you could post your package on a
github site to encourage collaborative development of it.

28

