
First Steps to Shiny Apps

W. John Braun, UBC

Workshop - Calgary

December 4, 2019

1

First Steps to Shiny Apps

We will illustrate Shiny apps through a sequence of simple examples.

We begin with a bar plot app.

First, install the shiny package into R:

install.packages("shiny")

Next construct a directory called barChart.

To this directory, copy the two files: server.R and ui.R, whose
contents are supplied later (or are downloaded from the relevant
webpage.

2

Running the bar plot app

From within an R session, we can open the shiny app in a web browser
by typing

runApp("barChart/")

3

The server and ui files

The web output is obtained by executing the commands in the ui.R and
server.R files via some Javascript programs that are included with the
shiny package.

The server.R file contains the R commands that the user will want to
execute through the app.

The ui.R file contains commands for the user interface.

4

The server file

server <- function(input,output){
output$main_plot <- renderPlot({

data <- input$datavalues

data <- as.numeric(strsplit(data, " ")[[1]])

barplot(data)

})
}

The bar plot app takes input data values, which we have enter into the
user interface as character data, separated by single spaces.

The server communicates with the user interface by receiving input
(data, usually) and transmitting output (in this case, a rendered plot).

5

The server file

In order to see the need for the awkward looking syntax used to convert
the data into a form that barplot() will accept, we try out an example
on artificial data:

data <- "3 5 7 11"

strsplit(data, " ")

[[1]]

[1] "3" "5" "7" "11"

The output from strsplit() is a list, containing 1 element, indexed by
[[1]].

Before converting to the numeric data type, we need to access the list
element, and then apply as.numeric().

6

The server file

Compare

as.numeric(strsplit(data, " "))

Error in eval(expr, envir, enclos): (list) object

cannot be coerced to type ’double’

as.numeric(strsplit(data, " ")[[1]])

[1] 3 5 7 11

The output from the second form is now ready for entry into barplot().

7

The ui file

ui <- shinyUI(pageWithSidebar(

headerPanel("Bar Chart"),

sidebarPanel(

textInput("datavalues",

"Enter your data (e.g. counts) here:", "1")

),

mainPanel(

plotOutput(outputId='main_plot')

)

)

Focus on the textInput line. This is converting the user input to
character data.

If we had asked for numericInput instead, our server file would be
treating the input data differently.

8

Enhancing the output

By adjusting the server and ui files, we can produce plots with more
features:

server <- function(input,output){
output$main_plot <- renderPlot({

data <- input$datavalues

data <- as.numeric(strsplit(data, " ")[[1]])

labels <- strsplit(input$labels, " ")[[1]]

plotTitle <- input$title

names(data) <- labels

barplot(data)

title(plotTitle)

})
}

Here, we are including labels for the bars and a title. The server needs
the information from the user interface.

9

Enhancing the output
ui <- shinyUI(pageWithSidebar(
headerPanel("Bar Chart"),
sidebarPanel(
textInput("datavalues", "Enter your data (e.g. counts) here:", "1"),
textInput("labels", "Enter the category labels here:", "A"),
textInput("title", "Enter the plot title here:", "Bar Chart")

),
mainPanel(
plotOutput(outputId='main_plot')

)
)
)

Note the third argument of the textInput(): this is a default value or starting value
which can be overwritten by the user.

10

A scatterplot app

The server file is:

server <-

function(input,output){
output$main_plot <- renderPlot({

datax <- input$xdatavalues

x <- as.numeric(strsplit(datax, " ")[[1]])

datay <- input$ydatavalues

y <- as.numeric(strsplit(datay, " ")[[1]])

ylabel <- strsplit(input$labels, " ")[[1]]

plotTitle <- input$title

plot(y ˜ x, las = 1, ylab=ylabel)

title(plotTitle)

lines(y ˜ x)

})
}

11

A scatterplot app

The ui file is:
ui <- shinyUI(pageWithSidebar(
headerPanel("Scatterplot"),
sidebarPanel(
textInput("xdatavalues", "Enter your data (x) here:", "1"),
textInput("ydatavalues", "Enter your data (y) here:", "1"),
textInput("labels", "Enter the y-axis label here:", "A"),
textInput("title", "Enter the plot title here:", "Scatterplot")

),
mainPanel(
plotOutput(outputId='main_plot')

)
)
)

Note that the las parameter controls the orientation of the axis labels.

12

A simple example using reactivity

One feature of shiny apps is the ability to cache information and update
the cache only when necessary.

We illustrate this feature with a very simple app that tests ones ability to
discern complete randomness from more structured data.

13

Running the correct app - with reactivity

From within an R session, we can open the shiny app in a web browser
by typing

runApp("check/")

14

Running the incorrect app - without reactivity

From within an R session, we can open the shiny app in a web browser
by typing

runApp("check1/")

15

