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Preface

This short book introduces R within the context of common statistical situations or vignettes. After a short mention
of R and RStudio, the book launches into brief discussions of correlation, contingency tables, t-tests, ANOVA,
simple and multiple regression, focussing on the associated R functions. The assumption of independence between
observations is key to the success of these methods, and the assumption of normality also gives many of these
methods their mathematical accuracy.

The book finishes off with introductions to three specialized topics: programming in R, writing documented
packages of functions and datasets, and shiny apps for use in a web environment.

There are many other books and online references that go more deeply into all of these topics. The goal here
is to provide a first glimpse of what the R program might be able to do for you and to show that the best way to
become an expeRt is to dive in and start playing.
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An Overview of R

R is based on the computer language S, developed by John Chambers and others at Bell Laboratories in 1976.
Robert Gentleman and Ross Thaka developed an implementation, and named it R. Gentleman and Thaka made it
open source in 1995, and hundreds of people around the world have contributed to its development.

Although it may be hard for students with little mathematical or computing background to believe, R and
RStudio are actually quite friendly tools, but becoming acquainted with them requires a bit of effort. A few hours
of playing with R code is all that is really required to achieve modest expertise. Perhaps the most important thing
to remember is that there is nothing wrong with making errors when learning a programming language like R. You
learn from your mistakes, and there is no harm done. Experimentation is the key to learning R, just as it has been
the key to science for the past 400 years. The reader is gently encouraged to try out the code embedded into this
text and to experiment with new variations to discover how the system will respond.

1.1 Downloading and installing R and RStudio

R can be downloaded for free from http://cloud.r-project.orgCRAN. A binary version is usually
simplest to use and can be installed in Windows and Mac fairly easily. A binary version is available for Windows
Vista or above from the web page http://cloud.r-project.org/bin/windows/base. The “setup
program”setup is usually a file with a name like R-3.6.1-win.exe. Clicking on this file will start an almost
automatic installation of the R system. Clicking “Next” several times is often all that is necessary in order to
complete the installation. An R icon will appear on your computer’s desktop upon completion.

RStudio is also very popular. You can download the “Open Source Edition” of “RStudio Desktop” from
http://www.rstudio.com/rstudio.com, and follow the instructions to install it on your computer. Although
much or all of what is described in this booklet can be carried out in RStudio, there will be little further comment
about that environment. Thus, you might find that some of the instructions to be carried out at the command line
can also be carried out with the menu system in RStudio.

1.2 Executing commands in R

Following installation, you should see an “R” icon on the Windows desktop or in your listing of Mac applications.
Clicking on it, or opening RStudio similarly should provide you with access to a window or pane, called the R
console in which you can execute commands. The > sign is the R prompt which indicates where you can type in
the command to be executed.

For example, you can do arithmetic of any type, including multiplication:

> 111141234
By hitting the “Enter” key, you are asking R to execute this calculation.

1111+1234

#4# [1] 2345
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Often, you will type in commands such as this into a script window, as in RStudio, for later execution, through
hitting “ctrl-R” or another related keystroke sequence.

Objects that are built in to R or saved in your workspace, i.e. the environment in which you are currently doing
your calculations, can be displayed, simply by invoking their name. For example, there is a data set (referred to as
a data frame in R) called women which contains information on heights and weights of American women:

> women

#4 height weight
## 1 58 115
## 2 59 117
## 3 60 120
## 4 61 123
#4# 5 62 126
## 6 63 129
## 7 64 132
## 8 65 135
## 9 66 139
#4# 10 67 142
## 11 68 146
## 12 69 150
## 13 70 154
## 14 71 159
## 15 72 164

In the remainder of the text, we will simply type the command and corresponding output without including the
> prompt symbol.

1.3 Key features of R
1.3.1 Packages

You can do many things with base R, but one of the major strengths of R is the availability of add-on packages that
have been created by statisticians and computer scientists from around the world. There are literally thousands of
packages, e.g. graphics, ggplot2, and MPV. A package contains functions and data which extend the abilities
of R. Every installation of R contains a number of packages by default (e.g. base, stats, and graphics)
which are automatically loaded when you start R.

To load an additional package, for example, called DAAG, type

library (DAAG)

If you get a warning that the package is can’t be found, then the package doesn’t exist on your computer, but it
can likely be installed. Try

install.packages ("DAAG")

In RStudio, it may be simpler to use the Packages menu.
Once DAAG is loaded, you can access data sets and functions that were not avaiable previously. For example,
the seedrates data frame is now available:

seedrates
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## rate grain
## 01 50 21.2
## 2 75 19.9
## 3 100 19.2
## 4 125 18.4
## 5 150 17.9

1.3.2 Calculations in R

You can control the number of digits in the output with the options () function. This is useful when report-
ing final results such as means and standard deviations, since including excessive numbers of digits can give a
misleading impression of the accuracy in your results. Compare

583/31
## [1] 18.80645
with

options (digits=3)
583/31

## [1] 18.8
Observe the patterns in the following calculations.

options (digits = 18)
1111111%1111111

## [1] 1234567654321
11111111%11111111

## [1] 123456787654321
111111111%111111111

## [1] 12345678987654320

With a few seconds of thought you will realize that R has given the incorrect value in the final calculation. This
is due to the way R stores information about numbers. As is the case with most programming languages, a limited
number of digits are available to store numbers, and floating-point arithmetic is used to carry out computations. In
the above example, we are seeing, first hand, how many digits of numeric storage are avaiable: around 17 digits.

1.3.3 Data frames

Most data sets are stored in R as data frames, such as the women object we encountered earlier. Data frames are
like matrices, but where the columns have their own names. You can obtain information about a built-in data frame
by using the help () function. For example, observe the outcome to typing help (women) .

It is generally unwise to inspect data frames by printing their entire contents to your computer screen, as it
is far better to use graphical procedures to display large amounts of data or to exploit numerical summaries. The
summary () function provides information about the main features of a data frame:
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summary (women)

#4 height weight
## Min. :58.0 Min. s1d5
## 1st Qu.:61.5 1st Qu.:124
## Median :65.0 Median :135
## Mean :65.0 Mean :137
## 3rd Qu.:68.5 3rd Qu.:148
## Max. :72.0 Max . :164

Columns can be of different types from each other. An example is the built-in chickwt s data frame:
summary (chickwts)

#4 weight feed
## Min. :108 casein 212
## 1st Qu.:204 horsebean:10
## Median :258 linseed :12

## Mean 1261 meatmeal :11
## 3rd Qu.:324 soybean :14
## Max. 1423 sunflower:12

If you want to see the first few rows of a data frame, you can use the head () function:

head (chickwts)

## weight feed
#4# 1 179 horsebean
#H# 2 160 horsebean
## 3 136 horsebean
## 4 227 horsebean
## 5 217 horsebean
## 6 168 horsebean

The tail () function displays the last few rows. The number of rows can be determined using the nrow ()
function:

nrow (chickwts)
## [1]1 71

Similarly, the ncol () function counts the number of columns. The str () function is another way to extract
information about a data frame:

str (chickwts)

## 'data.frame': 71 obs. of 2 variables:
## S weight: num 179 160 136 227 217 168 108 124 143 140
## $ feed : Factor w/ 6 levels "casein", "horsebean",..: 2 2 2 2 2 2 2 2 2 2

1.3.4 Reading data into a data frame from an external file

You will usually have a data set that you wish to read into R. If you have prepared it yourself, you could simply
type it into a text file, for example called mydata.txt, perhaps with a header indicating column names, and
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where you use blank spaces to separate the data entries. The read.table () function will read in the data for
you as follows:

mydata <- read.table ("mydata.txt", header = TRUE)

The object mydata now contains the data read in from the external file. You could use any name that you
wish in place of mydata, as long as the first element of its name is an alphabetic character.
If the data entries are separated by commas and there is no header row, as in the file wx_I3_2006.txt, you would

type:

wxl <- read.table("wx_13_2006.txt", header=F, sep=",")

Often, your data will be in a spreadsheet. If possible, export it as a . csv file and use something like the
following to read it in.

wx2 <- read.table ("wx_13_fwi_2006-2011.csv", header=F, sep=",")

If you cannot export to . csv, you can leave it as . x1sx and use the read.xslx () command in the xIsx
package (Dragulescu and Arendt, 2018).

Most likely, the data file that you have is not very clean in that there could be missing values or blank spaces in
awkward locations, and so on. When reading in a file with columns separated by blanks with blank missing values,
you can use code such as

datasetl <- read.table("filel.txt", header=TRUE, sep=" ", na.string=" ")

This tells R that the blank spaces should be read in as missing values. Observe the contents of dataset1:
datasetl

## X Y z
## 1 3 4 NA
## 2 51 48 23
## 3 23 33 111

Note the appearance of NA. This represents a missing value. We note, in passing, that functions such as
is.na () are important for detecting missing values in vectors and data frames. For more information about
handling of missing values, check out the See Also section of help (is.na) and the mice package (van
Buuren and Groothuis-Oudshoorn, 2011).

Sometimes, external software exports data files that are tab-separated. When reading in a file with columns
separated by tabs with blank missing values, you could use code like

dataset2 <- read.table("file2.txt", header=TRUE, sep="\t", na.string=" ")

Again, observe the result:
dataset?2
## X y z
## 1 33 223 NA

## 2 32 88 2
## 3 3 NA NA

If you need to skip the first 3 lines of a file to be read in, use the skip=3 argument.
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1.3.5 Extracting information from data frames
To extract the height column from the women data frame, use the $ operator:
women$height

## [1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

If you want only the chicks who were fed horsebean, you can apply the subset () function to the chickwts
data frame:

chickHorsebean <- subset (chickwts, feed == "horsebean")
chickHorsebean

## weight feed
#4# 1 179 horsebean
## 2 160 horsebean
#4# 3 136 horsebean
#4# 4 227 horsebean
## 5 217 horsebean
## 6 168 horsebean
## 7 108 horsebean
#4# 8 124 horsebean
#4# 9 143 horsebean
#4# 10 140 horsebean

You can now calculate the mean and standard deviation, and so on, of these weights:
mean (chickHorsebean$weight)
## [1] 160.2
sd (chickHorsebean$weight)
#4# [1] 38.626

In order to extract the 4th row from the chickHorsebean data frame, type
chickHorsebean[4, ]

## weight feed
## 4 227 horsebean

To extract the element in the 2nd column of the 7th row of women, type
women[7, 2]
## [1] 132
If we want the elements in the 4th through 7th row of the 2nd column of women, we can use
women[4:7, 2]
## [1] 123 126 129 132

Note the use of the : operator:
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4:7
## [1] 4 5 6 7

Another built-in data frame is airquality. If we want to compute the mean for each of the first 4 columns
of this data frame, we can use the sapply () function:

sapply (airquality[, 1:4], mean)

#4 Ozone Solar.R Wind Temp
#4 NA NA 9.9575 77.8824

The sapply () function applies the same function to all columns of the supplied data frame. Note also the
very useful functions in Wickham’s (2011) plyr package.

1.3.6 Factors

Factors offer an alternative, often more efficient, way of storing character data. For example, a factor with 6
elements and having the two levels, control and treatment can be created using:

grp <- c¢("control", "treatment", "control", "treatment", "treatment", "control")
grp
## [1] "control" "treatment" "control" "treatment" "treatment" "control"

grp <- factor (grp)
grp

## [1] control treatment control treatment treatment control
## Levels: control treatment

Consider the built-in data frame InsectSprays

summary (InsectSprays)

#4 count spray
## Min. : 0.0 A:l2
## 1st Qu.: 3.0 B:12
## Median 7.0 C:12
## Mean 9.5 D:12
## 3rd Qu.:14.2 E:12
## Max. :26.0 F:12

The second column of this data frame is a factor representing the different types of spray used in the associated
experiment. The levels of this factor can be listed using the 1evels () function:

levels (InsectSprays$spray)
## [l] llA" "Bll "C" "D" "E" "F"

Factors are a more efficient way of storing character data when there are repeats among the vector elements.
This is because the levels of a factor are internally coded as integers.
To see what the codes are for our factor, we can type
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as.integer (InsectSprays$spray)

## (11 1 1111111111122222222222233333333333
## [36] 3 4 4 4 4 4 4 4 4444455555555 55505066¢66¢6666 6 6
## [71] 6 6

The labels for the levels are only stored once each, rather than being repeated. We can change the labels for the
factor using the levels () function as follows:

levels (InsectSprays$spray) [3] <— "Raid"
Observe the effect of the change in

summary (InsectSpraysS$spray)

## A B Raid D E I
## 12 12 12 12 12 12

The levels () function also offers a simple way to collapse categories. Suppose we are interested in com-
paring the first three levels with the last three levels. We can create a new factor for this purpose as follows:

InsectSprays$SnewFactor <- InsectSprays$spray
levels (InsectSprays$newFactor) <- c("A", "aA", "A", "B", "B", "B")

Check the result:

summary (InsectSprays)

## count spray newFactor
## Min. : 0.0 A :12 A:36

## 1st Qu.: 3.0 B :12 B:36

## Median 7.0 Raid:12

## Mean 9.5 D 112

## 3rd Qu.:14.2 E 212

## Max. :26.0 F 212

1.3.7 Histograms and simulated normal data

The hist () function can be used to draw histograms, and the rnorm () function can be used to simulate draws
from a normal distribution'

A standard normal random variable has a mean of O and a standard deviation of 1. Figure 1.1 shows the
results from simulating 2000 standard normal variates, together with a plot of the normal probability density curve,
obtained from the dnorm () function. Note that we have used the curve () function with the add argument to
overlay the curve. The col parameter controls the colour.

Z <— rnorm(2000)
hist (Z, prob = TRUE)
curve (dnorm(x), from = -3, to = 3, add = TRUE, col = "blue")

loften used as a model for noise
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Histogram of Z
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Figure 1.1: Histogram of 2000 standard normal random variates with overlaid density curve (in blue).

1.4 Specialized tools for managing datasets

R is an ideal environment for handling small to moderate-sized data sets. (Note that a moderate size might involve
a million observations on 100 variables.) Large data sets can involve trillions of observations on thousands of
variables. It is difficult to read such data sets into R, but even moderate-sized data sets can pose problems for R, in
terms of efficiency. A number of improvements have been introduced in the recent past to help with cleaning data.
The tidyverse https://www.tidyverse.org/ contains a number of R packages for this purpose. We
start by discussing a new version of data frame, the tidy table, or tibble.

1.4.1 Tibbles

A tibble can be created from an existing data frame, using the as_tibble () function, found in the tibble
package (Wickham, 2017).

library (tibble)
trees.tbl <- as_tibble (trees)

Tibbles are like data frames, but they prevent you from doing silly things, like printing a whole data set to the
screen:

trees.tbl

## # A tibble: 31 x 3

#4 Girth Height Volume
## <dbl> <dbl> <dbl>
## 1 8.3 70 10.3
## 2 8.6 65 10.3
## 3 8.8 63 10.2
## 4 10.5 72 16.4
## 5 10.7 81 18.8
## o6 10.8 83 19.7
## 7 11 66 15.6
#4# 8 11 75 18.2
## 9 11.1 80 22..6
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Figure 1.2: The effect of plotting t rees.tbl.
## 10 11.2 75 19.9
## # ... with 21 more rows

Getting a glimpse of a tibble

The gl impse function is similar to st r but a little friendlier:

glimpse (trees.tbl)

## Observations: 31

## Variables: 3

## S Girth <dbl> 8.3, 8.6, 8.8, 10.5, 10.7, 10.8, 11.0, 11.0, 11.1, 11.2...
## $ Height <dbl> 70, 65, 63, 72, 81, 83, 66, 75, 80, 75, 79, 76, 76, 69,...
## $ Volume <dbl> 10.3, 10.3, 10.2, 16.4, 18.8, 19.7, 15.6, 18.2, 22.6, 1...

Tibbles are like data frames

Tibbles act like data frames in some ways. Functions such as summary () and str () are still useful. For
example,

str (trees.tbl)

## Classes 'tbl df', 'tbl' and 'data.frame': 31 obs. of 3 variables:
## $ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2

## $ Height: num 70 65 63 72 81 83 66 75 80 75

## $ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9

An example of a plotted tibble is provided in Figure 1.2.

plot (trees.tbl)
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Tibbles are not like data frames

The girth of a tree is like its circumference, so we might expect the volume of the tree to be related to the square
of girth times height. Specifically, we might predict volume from girth and height using the following formula:
G’H
V =
4

We can calculate this prediction from the given data and see how much error there is. To do this, we need
functions in the tidyr and dplyr packages.

library (tidyr)
library (dplyr)

trees.tbl <- trees.tbl %>%
mutate (VolumePredicted = Girth"2+Height/ (4+pi))
trees.tbl

## # A tibble: 31 x 4

## Girth Height Volume VolumePredicted
#4 <dbl> <dbl> <dbl> <dbl>
## 1 8.3 70 10.3 384.
## 2 8.6 65 10.3 383.
## 3 8.8 63 10.2 388.
## 4 10.5 72 16.4 632.
## 5 10.7 81 18.8 738.
## 6 10.8 83 19.7 770.
## 7 11 66 15.6 636.
## 8 11 75 18.2 722.
## 9 11.1 80 22..6 784 .
## 10 11.2 75 19.9 749.
## # ... with 21 more rows

Why are the predicted volumes off by so much? To find the answer, read the help file to find that the Girth
measurements are actually diameter measurements in inches. The other variables are in terms of feet.
Re-doing the calculation with diameter, instead of girth, we have

v,::pi*[ﬂfi
1(12)?

We can calculate this prediction from the given data and see how much error there is:

trees.tbl <- trees.tbl $%$>%

mutate (VolumePredicted Girth"2+Height/ (4%1272))

trees.tbl

## # A tibble: 31 x 4

#4 Girth Height Volume VolumePredicted
## <dbl> <dbl> <dbl> <dbl>
## 1 8.3 70 10.3 8.37
## 2 8.6 65 10.3 8.35

## 3 8.8 63 10.2 8.47
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Figure 1.3: Residual plots for the tree volume model.
## 4 10.5 72 16.4 13.8
## 5 10.7 81 18.8 16.1
## o6 10.8 83 19.7 16.8
## 7 11 06 15.6 13.9
## 8 11 75 18.2 15.8
## 9 11.1 80 22.6 17.1
## 10 11.2 75 19.9 16.3
#4 # with 21 more rows

1.4.2 Visualizing the errors in the volume predictions

The code below causes the errors or residuals to be plotted against the predicted volumes in Figure 1.3. Note that

we are still systematically under-predicting the volume and the prediction error is increasing with diameter.

trees.tbl <- trees.tbl
mutate (error

plot (error ~ VolumePredicted, data

Volume - VolumePredicted)

o o
s>%

= trees.tbl)

Example 1.1 The motor data frame in the MPV package (Braun, 2019) contains measurements on the amount
of vibration for motors fitted with 5 different brands of bearings.

library (MPV)
motor.tbl <- as_tibble (motor)

This data frame is not in case-by-variable format. The measurements are just laid out in parallel lists:

motor

.tbl

## # A tibble:

##
##
## 1
## 2
## 3

"Bra

nd 1°
<dbl>
13.1
15
14

6 x

5

"Brand 2°

<dbl>
16.3
15.7
17.2

"Brand 3°
<dbl>
13.7
13.9
12.4

"Brand 4°

<dbl>
15.7
13.7
14.4

"Brand 5°
<dbl>
13.5
13.4
13.2
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Figure 1.4: Side-by-side boxplots of the motor vibration data.
## 4 14.4 14.9 13.8 16 12.7
## 5 14 14.4 14.9 13.9 13.4
## © 11.6 17.2 13.3 14.7 12.3

1.4.3 Converting to case-by-variable format using gather ()

The $>% symbol is used to tell R that motor.tbl is the tibble to be used in the gather calculation:

motor.cbv <- motor.tbl %$>% gather (names (motor.tbl), key="Brand",

value="vibration")
motor.cbv

## # A tibble: 30 x 2
#4 Brand vibration
#4 <chr> <dbl>
## 1 Brand 1 13.1
## 2 Brand 1 15
## 3 Brand 1 14
## 4 Brand 1 14.4
## 5 Brand 1 14
## 6 Brand 1 11.6
## 7 Brand 2 16.3
## 8 Brand 2 15.7
## 9 Brand 2 17.2
## 10 Brand 2 14.9
## # ... with 20 more rows

Note that one of the columns is a character vector and the other is a numeric vector.

1.4.4 Visualizing the result - use of a box plot for comparing distributions

With the data in case-by-variable format now, where one of the variables should really be a factor, the plot ()
function provides us with side-by-side boxplots as displayed in Figure 1.4. The solid black bars represent the

sample medians.
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plot (vibration ~ factor (Brand), data = motor.cbv, xlab="Brand")

1.5 Sources of additional information

John Maindonald has written a comprehensive introduction and overview of R which is a very useful reference for
scientists. It can be found at
https://www.researchgate.net/publication/228702931
_The_R_System—-An_Introduction_and_Overview

A handy reference card has been constructed by Jonathan Barron and is available at
http://www.psych.upenn.edu/ baron/refcard.pdf



2
An Overview of Statistical Modelling

To a lot of people, the field of statistics can sound frightening, since the underlying theory is based on some
sophisticated mathematics which is not easily understood. When simplified to the point where most people can
quickly and easily understand, it is then viewed as somewhat boring or unimaginative.

In reality, statistics is an important and powerful discipline which combines elements of art and science. From
a certain perspective, it lies at the heart of the scientific method, since when approached properly, it refines the
beliefs of an investigator who brings a certain level of knowledge (including possible errors in judgement) about
a scientific problem. It does this by allowing the investigator to incorporate new information in the form of data,
which may or may not be in numeric form. By appropriate use of probability, the level of uncertainty in the
conclusions is measured, either through confidence intervals or p-values, or using a fully probabilistic approach
referred to as Bayesian. The latter approach will not be pursued here, although not because it is not important in
its own right.

2.1 Types of data

Before taking measurements or observations on some type of phenomenon, they are unknown. A useful way of
coping with this lack of knowledge is based on probability. Probability can allow us to quantify our uncertainty
about measurements. For example, before throwing a six-sided die, we know that the number of spots that we will
observe follows a specific probability distribution, and we refer to that number as a random variable, which we
might refer to as Y, and we can say that the probability that Y = 4 is 1/6, and that the probability that Y = 7 or
Y =1.5is0.

The number of spots on the die, Y, is an example of a count, a type of numeric variable. The number of heads,
H, in one toss of a coin is another example of a count, but this time with only two possibilities H = 0 or H = 1.
H is an example of a binary random variable or indicator variable. If you think about it, the numbers O or 1 are not
actually observed, but rather the head or tail. Therefore, the data is, strictly speaking, not of the form of a numeric
variable in this case, but rather a categorical variable, with levels Head and Tail. By using the random variable H,
we have converted the categorical variable to numeric by a particular type of coding, but note that the coding was
arbitrary, since we could have also defined 7" to be 0 or 1, depending on the number of tails observed.

Other forms of categorical data are possible as well, such as eye-colour, which might include black, brown,
blue, and other. In this case, we would do the numeric coding using three binary variables, B, By and B3, where
B is 1 if the eye-colour is black, and 0, otherwise. B, = 1 for a brown eye and B, = 0, otherwise. B3 = 1 for a
blue eye and B3 = 0, otherwise. All other eye colours are coded automatically as By = By = B3 = 0.

Another important type of data is continuous data. Continuous variables take on measurements that are not
necessarily counting numbers, and are expressed as decimals. Temperature, height, weight and time are often
thought of as examples of continuous variables. An important distribution for continuous variables is the normal
distribution which gives the familiar symmetric bell-shaped curve. Theoretically, normal random variables can
take on any kind of value, positive and negative, so there are situations where this is clearly not appropriate. Time-
to-event data, such as the time until someone recovers from a disease, or the time until a lightbulb fails, is a data
type which is continuous and where the normal distribution is usually not a good approximation. Sometimes a
transformation, such as a log-transformation or a square root transformation yields a new version of the variable
which is better approximated by normality.

16
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Figure 2.1: Box plot of river lengths, on original and log scales.

2.2 Graphic and numeric summaries

An important facet of statistics is univariate analysis, whereby the distribution of a given single random variable
is studied, often through the use of summary statistics, such as the mean, median, standard deviation and so on,
or through the use of graphics, such as the box plot, histogram or dot chart. A bar chart is the most effective way
of conveying categorical data; although pie charts are popular, they have been largely discredited as effective data
analysis tools, and should be avoided.

We briefly consider two examples here.

2.2.1 River Lengths - Numeric

The rivers data set contains the lengths of 141 important or major North American rivers. A quick numeric
summary of these data is obtained through

summary (rivers)

#4# Min. 1lst Qu. Median Mean 3rd Qu. Max.
## 135 310 425 591 680 3710

A box plot, as shown in the left panel of Figure 2.1, can be constructed using

par (mfrow=e(1l,2), mar = c¢(1, 3, 1, 1))
boxplot (rivers)
boxplot (log(rivers))

boxplot (rivers)

A histogram could be constructed using hist in place of boxplot. Both types of plot reveal a distribution
which is skewed to the right. A normal distribution is not immediately appropriate due to this fact (which is related
to the fact that river length cannot be 0). Taking logs and then computing the box plot gives the graph in the right
panel of Figure 2.1. The result is much more symmetric; the histogram would be hard to distinguish from a normal
distribution.

boxplot (log(rivers))
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2.2.2 Eye Colour - Categorical Data

40

20
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black

brown

blue

green

Figure 2.2: Bar chart of brown-haired male eye-colour.

black brown
53 50

A sample of brown-haired males revealed the following eye colour counts:

green
15

an equivalent alternative — which hides the total number of data points.

barplot (c¢("black" = 53,

The bar chart is constructed using

"brown" = 50,

2.3 Classifying basic models by data type

"blue" = 25,

The table above provides the best form of numeric summary for this kind of data. Converting to percentages is

"green" = 15))

The heart of statistical modelling lies in determining the relationships between different variables. The goals of
statistical analysis are either prediction and explanation. For example, one might want to predict a future value of a

random variable, called the response variable, given values of other variables, variously called predictor variables,

covariates, or explanatory variables. The latter term is more appropriate when thinking of the modelling problem
as one of attempting to explain or understand how the response variable relates or is associated with the other

variables.
The following table may be useful in organizing your thoughts as to the best form of analysis for given types

of data. It is important to remember that this table does not exhaustive of the kinds of statistical analyses that could
be undertaken. The ones listed are the most commonly encountered.

response \ covariates | continuous categorical both
continuous regression, t-test, ANCOVA
correlation ANOVA,
Wilcoxon,
Sign tests
categorical logistic contingency logistic

tables
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Regression refers to both simple and multiple regression (which involves more than 1 covariate). ANOVA
refers to the analysis of variance, whereby means of different treatment groups are constrasted, depending on
the levels or combination of levels from one or more factors. Factors are essentially another way of referring
to categorical variables. Block designs are included in this category, and involve a factor which is not of direct
interest to the scientist but which is known or believed to have an affect on the response. By including blocking
factors in such analyses, more precision (i.e. less uncertainty) can be gained. ANOVA can also be viewed as a type
of regression where the covariates are categorical and are made numeric by the binary variable coding described
earlier.

ANCOVA is the analysis of covariance, which can be viewed as regression with both continuous and categorical
predictors, or as a way of doing ANOVA (i.e. comparing treatment means), accounting for continuous covariates;
this is a way of blocking with continuous covariates.

Logistic regression refers to the modelling of the probability distribution of a binary response variable, and
the modern view of statistics sees logistic regression as encompassing contingency table analysis. In other words,
contingency table analysis can be accomplished by performing logistic regression with categorical covariates.

Exercises

1. Construct the histogram plot of the data in the rivers data set. Describe the shape of the distribution.
2. Construct the histogram of the rivers data on the log scale. Describe the shape now.
3. Why do you think a bar chart is more appropriate than a pie chart for visualizing categorical data?'

4. The default colour scheme for most plots in R is gray-scale and not colour. What are the reasons for avoiding
colour when visualizing data??

5. The HairEyeColor data set in R contains sample information on hair and eye colour for males and
females. If you type HairEyeColor, you will see two contingency tables of hair colour versus eye colour
for the two sexes. You can access the blond female eye colour information directly, by typing

HairEyeColor ([ ,4, 2]

Construct a bar chart for the eye colour of blond females by typing

barplot (HairEyeColor[ ,4, 2])

What happens when you omit the ‘2’7

6. Type help (InsectSprays) to find information on this data set. Then construct a histogram of the
counts of insects in the various experimental plots by using

hist (InsectSpraysS$count)

Note the shape of the distribution and re-draw the histogram using the sgrt function, that is, by applying a
square root transformation to the counts beforehand. How does the distribution shape change.

7. Re-do the previous exercise with box plots. Then try

boxplot (count ~ spray, data = InsectSprays)

and repeat using the square root transformation of the counts. What is the effect of the square root transfor-
mation here?’

IDiscerning differences in areas and angles is more difficult than discerning differences in heights.

2Reproducing plots on hard copy often uses gray-scale, and more importantly, a surprisingly large proportion of the human population is
colour-blind.

3The variability in the different distributions is better approximated by a constant after applying the square root transformation.
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8. In the previous question, what type of data analysis is recommended?*

9. Type help (airquality) to find information on the ai rquality data set. Then construct a histogram
of airquality$0Ozone. Repeat using a log-transformation. Which is closer to normality?

10. If you were to model Ozone level as it relates to Wind, what analysis technique is recommended?’ What if
you take temperature into account?® What if you add in the Month variable?’

4ANOVA

3Simple regression.

SMultiple regression.

"There are choices here, but ANCOVA is a simple option.



T-tests

The goal of these tests, and the related confidence intervals, is to provide information about the mean of a single
population, or about the difference in means of two population. The critical assumption underlying the t-test is
that the measurements are independent of each other. In other words, if you know the value of one or more of the
observations, you cannot predict another observation or group of observations with improved certainty.

We will use simulation to demonstrate the techniques.

3.1 One sample

We suppose that we have a random sample of measurements from a population with unknown mean p and variance
o2. Without telling you, I will simulate such 8 such measurements, storing them in an object called X, and we will
use a test to determine if the true mean is O or not:

## [1] 0.89216 2.57622 0.92357 2.59863 2.90734 1.53666 3.42392 0.24498
We can calculate the mean and standard deviation for this sample using the mean () and sd functions:

mean (X)

## [1] 1.8879

sd (X)

## [1] 1.1415

Clearly, the sample mean is not 0, but the true mean could still be 0, and this result could just be the result of
random sampling error. The t-test helps us answer this question:

t.test (X, conf.level = .995)
#4

## One Sample t-test

#4

## data: X

## t = 4.68, df = 7, p-value = 0.0023

## alternative hypothesis: true mean is not equal to O
## 99.5 percent confidence interval:

## 0.26174 3.51413

## sample estimates:

## mean of x

#4 1.8879

The small p-value indicates strong evidence against the hypothesis that the true mean is 0. In fact, this assertion
is correct, since the code used to generate the random sample is as follows:

21
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X <- rnorm (8, mean = 1.5)

Note that we have used a 99.5% confidence interval to estimate the mean. This differs from the usual 95%
that you might have been told to use. If you are conducting multiple tests, you should use caution, and a higher
confidence level is a first step, but see the next section for more information.

3.1.1 ASA Statement on p-values

The American Statistical Association (ASA) is taking steps to halt the widespread abuse of p-values in science. In
2016, the ASA released a statement which provides important guidance. Information can be obtained in the article
by R. Wasserstein at
https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

Central to Wasserstein’s document is the following information:

The statement’s six principles, many of which address misconceptions and misuse of the p-value, are
the following:
1. P-values can indicate how incompatible the data are with a specified statistical model.

2. P-values do not measure the probability that the studied hypothesis is true, or the probability that
the data were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based only on whether a
p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the importance of
a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

3.1.2 An example with a skewed population

This time, we simulate a sample of 30 independent observations from an exponential population (i.e. non-normal)
with mean 1:

Y <- rexp (30)

Even though this data set comes from a non-normal population, let’s see what happens when we apply the t-test
of the hypothesis that the mean is 0.

t.test (Y)

##

## One Sample t-test
##

## data: Y

## t = 5.05, df = 29, p-value = 2.2e-05

## alternative hypothesis: true mean is not equal to O
## 95 percent confidence interval:

## 0.69033 1.63019

## sample estimates:

## mean of x

## 1.1603

The p-value is very small, leading us to conclude that the true mean is not 0 (and it isn’t).
If we were to test the hypothesis that the true mean is 1 (the truth), we would do the following:
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t.test (Y, mu = 1)

#4

## One Sample t-test

#4

## data: Y

## t = 0.697, df = 29, p-value = 0.49
## alternative hypothesis: true mean is not equal to 1
## 95 percent confidence interval:

## 0.69033 1.63019

## sample estimates:

## mean of x

## 1.1603

In this case, the p-value is very large, and the interpretation would be that we do not have enough evidence to
reject the null hypothesis.

This example shows that with enough data points, even a substantially skewed population is not a serious
enough violation of the assumptions behind the t-test to warrant using an alternative testing method.

3.1.3 A smaller skewed sample

This time, we simulate a sample of 5 independent observations from an exponential population (i.e. non-normal)
with mean 1:

Y <- rexp(5)

Let’s see what happens when we apply the t-test of the hypothesis that the mean is 0.

t.test (Y)

#4

## One Sample t-test
#4

## data: Y

## t = 2.6, df = 4, p-value = 0.06

## alternative hypothesis: true mean is not equal to O
## 95 percent confidence interval:

## -0.071014 2.209623

## sample estimates:

## mean of x

## 1.0693

The p-value is not very small, indicating that we don’t have enough evidence to reject the null hypothesis.
If we were to test the hypothesis that the true mean is 1 (the truth), we would do the following:

t.test (Y, mu = 1)

#4

## One Sample t-test

#4

## data: Y

## t = 0.169, df = 4, p-value = 0.87

## alternative hypothesis: true mean is not equal to 1
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## 95 percent confidence interval:
## -0.071014 2.209623

## sample estimates:

## mean of x

#4 1.0693

In this case, the p-value is very large, and the interpretation would be that we do not have enough evidence to
reject the null hypothesis.

This example shows that with enough data points, even a substantially skewed population is not a serious
enough violation of the assumptions behind the t-test to warrant using an alternative testing method.

What if we have more data?

Returning to the test that the mean is 0, let’s suppose we have an additional data point:
Y <- c(Y, rexp(l))

Again, let’s see what happens when we apply the t-test of the hypothesis that the mean is 0.

t.test (Y)

#4

## One Sample t-test
#4

## data: Y

## t = 2.91, df = 5, p-value = 0.033

## alternative hypothesis: true mean is not equal to O
## 95 percent confidence interval:

## 0.11632 1.87919

## sample estimates:

## mean of x

#4 0.99776

The p-value is smaller, indicating that we have some evidence to reject the null hypothesis, but we might want
to obtain an even larger sample, in order to be more certain.

3.2 Two independent samples

If we have two random samples that are independent of each other, we can still use a t-test to compare the means
of the populations from which they were sampled.

Let’s start with X and Y which were simulated earlier. They come from different populations, and the first has a
true mean of 1.5 and the second, a true mean of 1. The t-test will be correct if it gives us a small p-value, indicating
strong evidence against the null hypothesis that the true means are the same:

t.test (X, Y)

#4

## Welch Two Sample t-test

#4

## data: X and Y

## t = 1.68, df = 12, p-value = 0.12

## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:

## -0.26369 2.04405
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## sample estimates:
## mean of x mean of y
## 1.88794 0.99776

We actually know, in this case, that the variances are equal, so we could use
t.test (X, Y, var.equal=TRUE)

#4

## Two Sample t-test

#4

## data: X and Y

## t = 1.61, df = 12, p-value = 0.13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3179 2.0983

## sample estimates:

## mean of x mean of y

#4 1.88794 0.99776

Note that the results are not all that different. The conclusions are the same: we don’t have enough data to
reject the null hypothesis that the means are different. This is not surprising, since the sample sizes are pretty small
(8 and 6).

3.3 Two samples - matched pairs

If there is a one-to-one correspondence between measurements in one of the samples with measurements in the
other sample, then the appropriate way to compare the means is by taking the differences, and running a one-sample
test on the differences. This can be done with the paired option in the t .test () function.

Let’s suppose L is a set of left foot lengths (in cm) for a sample of 15 adult males, and R contains the cor-
responding right foot lengths. We would be interested in any systematic difference in the lengths of the feet. A
simulation model for the case where there is no difference could be the following:

L <- rnorm(l5, mean =28, sd = 1)
R <-— L + rnorm(1l5, mean = 0, sd = .03)

Here we have assumed that the left feet are normally distributed with a mean of 28 cm and a standard deviation
of 1 cm. The right feet are not equal to the left feet, but on average there is no difference. The standard deviation
of the difference is small.

Let’s see what the t-test says:
t.test (L, R, paired=TRUE)

#4

## Paired t-test

#4

## data: L and R

## t = -0.417, df = 14, p-value = 0.68
## alternative hypothesis: true difference in means is not equal to O
## 95 percent confidence interval:

## -0.016705 0.011262

## sample estimates:

## mean of the differences

## -0.0027213
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The p-value is large indicating that there is no evidence of a difference, in line with the truth. Let’s now simulate
from a population where the right feet tend to be slightly larger than the left feet, on average:

L <- rnorm(l5, mean =28, sd = 1)

R <- L + rnorm(1l5, mean = 0.02, sd = .03)
Does the t-test find the difference?

t.test (L, R, paired=TRUE)

#4

## Paired t-test

#4#

## data: L and R

## t = -2.74, df = 14, p-value = 0.016

## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:

## -0.0402706 -0.0049088

## sample estimates:

## mean of the differences

#4 -0.02259

The p-value is pretty small, indicating that we have fairly strong evidence that there is a difference between the
left and right lengths in this sample.

3.4 Classical nonparametric tests

These tests remain valid for data where the normality assumption clearly does not hold. They have nothing to offer
if the more important independence assumption fails. They can all be carried out using the wilcox.test ()
function.

3.4.1 Sign test

The sign test can be used to test for various properties of a population, based on a given random sample.

If we suspected that the left and right feet lengths from the earlier section were non-normal, we could use the
sign test to determine whether there is evidence that the right feet are longer than the left feet, by checking the sign
of the difference between the right and left feet:
sign(R - L)

## [(1] -2 1 1 1 1 1 1 1 1 1 1 1 1 -1 1

There seem to be a lot of positives and not so many negatives, so we can compute a p-value for the test against
the null hypothesis that there is no difference between left and right foot length by counting the number of positives:
Npos <- sum(sign (R-L)>0)

and comparing with what we might see in a binomial distribution with p = .5, and n = 15 trials:

binom.test (Npos, 15)
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#4

## Exact binomial test

#4

## data: Npos and 15

## number of successes = 13, number of trials = 15, p-value = 0.0074
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:

## 0.59540 0.98342

## sample estimates:

## probability of success

#4 0.86667

The p-value is very small, indicating that we have evidence against the null hypothesis. This is in agreement
with what we saw in the matched-pairs result.

3.4.2 Wilcoxon sign-rank test

The Wilcoxon sign-rank test can be carried out on the simulated foot length data as follows:
wilcox.test (L, R, paired = TRUE)

#4

## Wilcoxon signed rank test

#4

## data: L and R

## VvV = 17, p-value = 0.012

## alternative hypothesis: true location shift is not equal to 0

Again, we have a small p-value, indicating evidence against the null hypothesis that the feet are the same
length.

3.4.3 Mann-Whitney U test

Recall that X is normally distributed and Y is exponentially distributed. We can use the Mann-Whitney U test to
test for this kind of difference.

wilcox.test (X, Y)

##

## Wilcoxon rank sum test

##

## data: X and Y

## W = 35, p-value = 0.18

## alternative hypothesis: true location shift is not equal to 0

The p-value is large, so the test failed to find the difference.
Let’s try another example, this time with different means:

X <= rnorm(10)
Y <- rexp(5)

The samples are fairly small, but the test result below confirms that there is a difference between the two
populations:
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wilcox.test (X,Y)

#4

## Wilcoxon rank sum test

#4

#4 data: X and Y

## W = 7, p-value = 0.028

## alternative hypothesis: true location shift is not equal to 0
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Simple Regression

The yield (y, in kg/plot) was measured for various salinity concentrations (z, measured in units of electrical
conductivity). 18 measurements were recorded in a file called tomato.txt whose contents appear below:

1.60 59.50
1.60 53.30
1.60 56.80
1.60 63.10
1.60 58.70
3.80 55.20
3.80 59.10
3.80 52.80
3.80 54.50
6.00 51.70
6.00 48.80
6.00 53.90
6.00 49.00
10.20 44.60
10.20 48.50
10.20  41.00
10.20  47.30
10.20  46.10

The first column contains the salinity concentration levels, and the second column contains the yield measure-
ments.

We read these data into R using the read.table () function (or using a menu option in RStudio):
tom <- read.table ("tomato.txt", header=FALSE)

Since there is no header, we should apply some sensible names to the data frame:
names (tom) <- c("salinity", "yield")

We next construct a scatterplot of the data to look for patterns and outliers as in Figure 4.1.
plot (yield ~ salinity, data = tom)

We have plotted yield against salinity since we take it that the response variable is yield and the ex-
planatory variable or predictor variable is salinity. We base this on the fact that the yield was measured at various

salinity concentrations that appear to have been set by the experimenter.

29
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Figure 4.1: Scatterplot of tomato electrical conductivity data.

The scatterplot gives an indication of a clear downward trend as salinity increases. The trend is also vaguely
linear. The suggestion in the graph is that yield could be predicted by salinity. We can investigate this with the
1m () function:

tom.lm <- lm(yield ~ salinity, data = tom)

Note that the model formula used here, i.e. yield ~ salinity, is identical to that used in the
plot () function. This is often the case: if you can figure out a good way of plotting the data, this often suggests
the form of analysis.

We can explore the output from the fitted model using the summary () function:

summary (tom. 1m)

##

## Call:

## lm(formula = yield ~ salinity, data = tom)

#4

## Residuals:

## Min 10 Median 30 Max

## -4.956 -1.967 0.173 1.825 4.844

##

## Coefficients:

#4# Estimate Std. Error t value Pr(>|t])
## (Intercept) 60.67 1.28 47.37 < 2e-16
## salinity -1.51 0.20 -7.53 1.2e-06
##

## Residual standard error: 2.83 on 16 degrees of freedom
## Multiple R-squared: 0.78,Adjusted R-squared: 0.766
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yield

salinity

Figure 4.2: Scatterplot of tomato electrical conductivity data with overlaid fitted line.

## F-statistic: 56.7 on 1 and 16 DF, p-value: 1.21e-06

From the output, we can see the estimates of the intercept and slope of the line. Note that the slope estimate,
—1.5088 is negative, corresponding to the negative relation between salinity and yield The intercept is 60.67. In
fact, we can overlay the scatterplot of the data with the fitted line using the abline () function and the output
from the 1m () function:

abline (tom. 1m)

The F'-statistic and corresponding p-value (1.212e — 06, a very very small number) suggest strongly that the
slope is nonzero, so the trend in the data is real, provided certain assumptions are satisfied:

1. the relation between salinity and yield is (at least approximately) linear.

2. the measurements are independent of each other, meaning that knowledge of one measurement does not give
you information about any other measurement, beyond what you would be able to predict from the line itself.

3. variability in the yield measurements is the same for all salinity levels.

The first and third assumptions are fairly easy to check, and Figure 4.2 helps to do this. A plot of residuals
(differences between what the line would predict and the yield measurements) is a clearer way of checking.

The second assumption is difficult to check. It is connected intimately to the manner in which the data have
been collected. We will see later that there are some kinds of dependence that can be assessed, but those methods
are not applicable here.

From the output, we also see the R? and adjusted R? values. Although these quantities are often quoted in
the scientific literature and used to justify or validate models, they are actually not very useful, and have little to
say about whether a model is valid or not. The proper interpretation of R? is as the proportion of variation in
the response explained by the model. The coefficient of determination coincides with the square of the Pearson
correlation coefficient:
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cor (tom$salinity, tomSyield)

## [1] -0.88304

By itself, this value tells us that the two variables are negatively correlated, meaning that if one were to plot
one of the variables against the other, we would see points scattered about a line with negative slope. In fact, we
did just that in Figure 4.2, suggesting that there is limited, if any, information to be gleaned from calculating a
correlation coefficient, when the power of a regression analysis is at our disposal. If one really wants to compute a
Spearman rank correlation, appropriate for data where a linear trend is not in evidence, one can use

cor (tom$salinity, tom$yield, method = "spearman")

## [1] -0.89396

This also is of limited additional use.

Exercises

1. Consider the data on the model car that was released from various points on a ramp and the distance traveled
was measured. The data frame is called modelcars, and it consists of two columns, distance.traveled
and starting.point.

library (DAAG)
mcar.lm <- lm(distance.traveled = starting.point, data = modelcars)
summary (mcar.lm) Scoefficients

#4# Estimate Std. Error t value Pr(>|t])
## (Intercept) 8.0833 1.0780 7.4988 2.0657e-05
## starting.point 2.0139 0.1312 15.3493 2.8019e-08

Identify the slope and intercept of the line relating distance traveled to starting point.! Is there strong evi-
dence of a nonzero slope to this line?? Is the slope positive or negative?>

2. Write down the two lines of R code which would produce the graph in Figure 4.3. 4

plot (distance.traveled ~ starting.point,
data = modelcars)
abline (mcar.lm)

3. Analyze the airquality data to determine the relationship between ozone and wind, by finding the slope
and intercept of the linear model. Then plot the line on a scatterplot of the data.

4. Repeat the above analysis using a square root transformation on the Ozone variable. Is this a better way of
modelling the data?’

lintercept: 8.083; slope: 2.014

2Yes, the p-value is 2.802e — 08 which is extremely small.

3Positive.

4plot(distance.travclcd starting.point, data = modelcars); abline(mcar.lm)

5Yes, the square root transformation reduces some of the nonlinearity which is apparent when working with raw Ozone data.
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Figure 4.3: Distance travelled by a model car launched from a ramp at various starting points.
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ANOVA

5.1 One factor

The chickwts data frame contains measurements of the weights of chicks who have been randomly assigned
to groups, each of which has been given a different type of feed. It is of interest to know whether the different
feed types lead to systematic differences in weight. In other words, does mean weight depend on the type of feed.
We refer to feed type as a factor having different levels representing the particular kinds of feed, e.g. linseed,
horsebean, and so on.

Side-by-side boxplots, as displayed in Figure 5.1, are a useful way to visualize these data.

plot (weight = feed, data = chickwts, cex.axis=.75)

From the graph, it seems that horsebean leads to lower weights than some of the other feed types. It is hard to
tell for sure if there is variability between treatments because of the variability within treatments, that is noise due
to unmeasured factors.

We can test whether there is a difference in the mean weights statistically with the analysis of variance
(ANOVA). A general purpose procedure is as follows:

chick.lm <- lm(weight = feed, data = chickwts)
anova (chick.1lm)

## Analysis of Variance Table

##

## Response: weight

## Df Sum Sg Mean Sg F value Pr (>F)
## feed 5 231129 46226 15.4 5.9e-10
## Residuals 65 195556 3009

The test statistic compares the variability in the averages with the variability in the noise through an F'-statistic.
A p-value is computed which gives the strength of evidence against the null hypothesis, that is the hypothesis that
there is no difference in the means. A small p-value — and in this case, it is very small — indicates strong evidence
against the null hypothesis, in favour of the alternative that there is a difference.

5.2 Two or more factors

Information on gas mileage for a number of cars is available in table.b3 of the MPV package. Although not
from a designed experiment, we will analyze this observational data as if it were. Our objective is to see if mean
gas mileage y depends on either or both of carburetor barrels (z¢g, viewed as a categorical variable) and type of
transmission 7.

library (MPV)

b3.1m <- 1lm(y ~ factor(x6>1)*x11, data = table.b3)
anova (b3.1m)

34
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Figure 5.1: Box-plots of chick weight samples for different types of feed.

## Analysis of Variance Table

#4

## Response: y

## Df Sum Sg Mean Sq F value Pr (>F)
## factor(x6 > 1) 1 0 0 0.02 0.895
## x11 1 689 689 40.85 6.4e-07
## factor(xo > 1):x11 1 76 76 4.50 0.043
## Residuals 28 472 17

A number of points need to be made. First, x6 is recorded in the data frame as if it is continuous (and it could
be treated as such), so in order to treat it as categorical, we use the factor () function. We have also coded the
variable to have more than 1 barrel or to have 1 barrel.

The second point is the use of the use of = which forces the model to include both of the factors as well as
interactions between the factors. Interaction effects can play an important role in modelling, since they reflect
situations where, for example, changing the level of one factor, might have different effects, depending on the level
of the other factor. In this case, increasing number of carburetor barrels might affect gas mileage differently for
automatic than for manual transmission. The output can help us determine if this is actually the case.

In fact, the p-value for the interaction effect is just under 5%, so there is moderate evidence of an interacting
effect between these two variables. The effect of the number of carburetor barrels on gas mileage could be different
for manual and automatic transmissions. If this were part of an actual research study, it is critical that this result
would be reproduced in a designed experiment. Publishing a marginally significant result such as we obtained here,
based on a small sample coming from an observational study would be irresponsible and reckless. Unfortunately,
this analysis mirrors too closely for a lot of what passes as scientific research in the published literature.



36 CHAPTER 5. ANOVA

5.3 Randomized block design

The penicillin data frame in the BHH2 package (Barrios, 2016) contains data coming from a randomized
block design. There appear to be two factors, one is the treatment, the other is called blend. The blend factor is
not of direct interest in the study, but has been included in order to reduce the noise in the data which would have
otherwise been due to unmeasured factors.

library (BHH2)

data (penicillin.data)

ml<-lm(yield treat+blend, data=penicillin.data)
anova (ml)

## Analysis of Variance Table

##

## Response: yield

#4 Df Sum Sqg Mean Sqg F value Pr (>F)
## treat 3 70 23.3 1.24 0.339
## blend 4 264 66.0 3.50 0.041
## Residuals 12 226 18.8

Because of the way the experiment has been designed, through randomization of subjects to treatment and
blocking groups, there is no reason to expect an interaction effect. The p-value for t reat provides the measure
of the strength of evidence against the hypothesis that the mean response does not depend on treatment.

Exercises

1. Consider the data in PlantGrowth and conduct an analysis of variance to determine if the mean dried
yield weight of the plants under study differs depending on whether the plants were grown under control
conditions or under either of two different treatment conditions.

Visualize the data with side-by-side boxplots.
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Multiple Regression

The data frame table.b4 in the MPV library contains the following columns:

y sale price of the house (in thousands of dollars)
x1 taxes (in thousands of dollars)

x2 number of baths

x3 lot size (in thousands of square feet)

x4 living space (in thousands of square feet)

x5 number of garage stalls

x6 number of rooms

x7 number of bedrooms

x8 age of the home (in years)

x9 number of fireplaces

There are 24 observations on these variables in the data frame. A natural question to ask is whether any or all
of the given variables or covariates could be used to predict the sale price of a house.
The multiple regression approach is to consider a linear model of the form

9
y:ﬁo“rZBjZ‘j +e.

j=1

If the 8 coefficients were known, then we could predict house price ¥y, to within the unknown noise value &, for
a new house in the same area (and era) from which the data were sampled, provided the information on taxes,
number of baths, and so on. If, for example, the ¢ term is modelled as a normal random variable with mean 0 and

variance o2, we could provide an interval which would contain the true price of the house with a given probability.

The elements of ¢ are assumed to be uncorrelated random variables with mean 0 and common variance 2.

The mean or expected value of y for the given values of the covariates is then
9
Elyl = fo+ Zﬁj%v
j=1

(The “E” notation stands for “Expected Value”.)

6.1 Fitting the model

The 1m () function will take care of the coefficient estimation, variance estimation, ¢t and F' and p-value calcula-
tions in one function call. For example, if we want to relate house price, y to z1, 3 and ¢, use

house.lm <- Im(y ~ x1 + x3 + x6, data=table.b4)

We can view the output from this, using the summary function as in

37
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summary (house.1lm)
or to see the coefficient estimates and their statistical properties only, use
summary (house.lm) $coefficients
If we include all of the covariates, we can use the dot notation in the model formula:

house.lm <- 1Im(y =~ ., data=table.Db4)

summary (house.lm) Scoefficients

## Estimate Std. Error t value Pr(>|t])
## (Intercept) 14.927648 5.91285 2.52461 0.024283
## x1 1.924722 1.02990 1.86884 0.082711
## x2 7.000534 4.30037 1.62789 0.125836
## x3 0.149178 0.49039 0.30420 0.765447
## x4 2.722808 4.35955 0.62456 0.542304
## x5 2.006684 1.37351 1.46099 0.166096
## x6 -0.410124 2.37854 -0.17243 0.865570
## x7 -1.403235 3.39554 -0.41326 0.685678
## x8 -0.037149 0.06672 -0.55679 0.586461
## x9 1.559447 1.93750 0.80488 0.434347

The output above lists a number of things. Our focus is principally on the Est imate column, since that gives
us the estimates of the coefficients 3. The intercept is 14.93 and the coefficient of x; is 1.92, and so on.

Together with these estimates are estimates of the standard errors. These provide an assessment of the amount
of uncertainty is associated with the corresponding coefficient estimate. Clearly, the estimate of B¢ has a relatively
large degree of uncertainty associated with it, since the standard error is much larger than the absolute value of the
estimate itself.

This highlights an important problem when applying multiple regression techniques: over-fitting. When using
a limited amount of data to estimate a large number of parameters in this case, 10, the degree of uncertainty in
the estimates rises quickly. It is often better to carefully decide which covariates to include in a model based on
other considerations. Use any known science or other information to help make these choices. For example, it
might be known that taxes and living space are highly predictive of sale price. In that case, focus on those variables
immediately in order to more precisely estimate their coefficients.

house.lm <- Im(y =~ x1 + x4, data=table.bd)
summary (house.lm) Scoefficients

#4# Estimate Std. Error t value Pr(>|t])
## (Intercept) 11.5447 3.17474 3.63643 1.5444e-03
## x1 2.9195 0.57599 5.06869 5.0972e-05
## x4 3.1574 3.29833 0.95729 3.4931e-01

Notice how the standard error estimates for the coefficients of z; and x4 are less than before, although the
standard error for the living space variable still exceeds the absolute value of the coefficient, so there is considerable
uncertainty left there.

6.2 Estimating and predicting

The model can now be used to estimate the expected house price for houses with ; taxes and x4 amount of living
space using the formula
y=11.5+4+2.92x1 + 3.1524.
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This can be accomplished in R using the predict () function. For instance, suppose we want to estimate the
mean sale price for homes with $2000 taxes and 3000 square feet of living area. Use

predict (house.lm, newdata = data.frame(xl = 2, x4 = 3))

## 1
## 26.856

The mean price for such a home is $25856. This estimate highlights an important point: this data set is old and
it applies to a particular location. In order to understand the housing market in a particular location and time, it is
necessary to use the relevant data.

Note also that the predict () function has been used. It can be used both for estimating the mean price
of a house or predicting the price of a specific house. Prediction uncertainty is usually much larger than estima-

tion uncertainty; both are incorporated in the predict () function. Use interval = "confidence" for
estimation and interval = "predict" for prediction. For example,

predict (house.lm, newdata = data.frame(xl = 2, x4 = 3), interval = "predict")
## fit lwr upr

## 1 26.856 10.233 43.479

This says that with 95% probability, the house we are looking at with taxes of $2000 and 3000 square feet of
living area is priced between $10232 and $43479.

predict (house.lm, newdata = data.frame(xl = 2, x4 = 3), interval = "confidence")

#4 fit lwr upr
## 1 26.856 11.42 42.292

This says that with 95% confidence, we can say that the mean price of houses with taxes of $2000 and 3000
square feet of living area is between $11420 and $42292.

6.3 Assessing the model

In the past, the term model validation was used when describing the process of deciding whether a model was
appropriate or not. This incorrectly conveys the sense that there is a correct model; it is now recognized that all
models are incorrect at some level, but some are more useful for certain purposes than others might be. Thus, the
term model assessment is now favoured, since it conveys a sense of checking the appropriateness of a given model
as opposed to checking its validity.

Although there are a number of statistics that are often (ab)-used to do this assessment, a graphical approach
is usually the best way to understand whether there are substantive problems with a given model. In particular,
graphs of residuals are the best way to decide if a model is failing severely. A residual is the difference between
the observed response value and the value predicted by the model. As such, residuals are effectively predictors of
the noise term ¢ in the model.

Since the noise term is assumed to have mean 0O, constant variance and to have no internal correlations, we
can often simply look at a graph of the residuals plotted against observation number, fitted value, or a predictor
variable to look for patterns. Clear patterns are a sign of severe model failure. Figure 6.1 displays the residuals
plotted against the fitted values, with a smooth fitted overlaid red curve which can guide the eye to any systematic
patterns. In this case, the curve is not substantially different from a flat line, which would be ideal. There does not
seem to be a clear pattern in the residuals in this case.

plot (house.lm, which = 1)
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Figure 6.1: Plot of residuals for house price model against fitted values.

Another important plot, such as in Figure 6.2, concerns the influence of individual data points on the model fit.
Large values of Cook’s distance are suggestive of difficulties which should be remedied. For assistance with such
problems, it is probably best to consult your local statisticians for help. The values seen in the current case are not
worrisome.

plot (house.lm, which = 4)

6.4 Significance of regression

The F'-test for significance of regression gives us a way of deciding whether any of the regression coefficients
should be nonzero. In other words, the coefficients (apart from the intercept) are assumed to be 0’s under the null
hypothesis and there must be at least one nonzero coefficient if the alternative hypothesis is true. An F’ distribution
is used to conduct the test. The p-value based on the test gives us the strength of evidence supporting the case
that at least one regression coefficient is nonzero, where, as usual, small values indicate more evidence than large
values would.

We can test whether the coefficients of z; and z4 are both 0 in a variety of ways, including by looking at all
output from summary (house. 1m). In order to see more clearly what is happening, you can use the anova ()
function to decide between the null model (one with only an intercept) and the model we have already fit:

house(O.1lm <- 1lm(y ~ 1, data = table.bid)
anova (house.lm, houseO.1lm)

## Analysis of Variance Table

#4

## Model 1: y =~ x1 + x4

## Model 2: y ~ 1

#4# Res.Df RSS Df Sum of Sqg F  Pr (>F)
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Figure 6.2: Influence diagnostic plot for house price models.

#4# 1 21 185
#4# 2 23 829 -2 -644 36.6 1.4e-07

The p-value is small indicating that at least one of the coefficients is nonzero. The nice thing about this approach
is that we can use it to decide if more variables should be added to the model. For example, let’s see if there are
any other variables to add, after adding x; and z2:

houseAll.1lm <- 1lm(y ~ ., data = table.bd)
anova (houseAll.lm, house.lm)

## Analysis of Variance Table

#4

## Model 1: yv 7 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
## Model 2: y = x1 + x4

#4 Res.Df RSS Df Sum of Sg F Pr (>F)
## 1 14 122
## 2 21 185 -7 -63.1 1.04 0.45

This analysis tells us that once we have taken taxes and living area into account, there is no point in adding
additional variables into the model. There is no evidence to suggest that the additional coefficients are nonzero.

Exercises
1. Consider the gas mileage data in table . b3 of the MPV package.
(a) Fitamultiple regression model to estimate mean gas mileage y for cars with x7 number of transmission
speeds and having weight x1(.

(b) Assess the model using the residual plot.
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(c) Use the model to estimate mean gas mileage for cars having weight 5000 pounds and 4 transmission
speeds. Use a 95% confidence interval.

(d) Use the F'-test for signifiance of regression to decide if any of the coefficients for your fitted model are
nonzero.

(e) Use another F'-test to decide if variables 1, xs, x4 or x5 should be added into the model you have
already developed.
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ANCOVA

The analysis of covariance (ANCOVA) allows us to model continuous responses as linear functions of continuous
and categorical covariates. In this way, it can be viewed as a relatively straightforward extension of multiple regres-
sion. It can also be viewed as an extension of ANOVA whereby there is a blocking factor which is continuously
measured. For a categorical covariate with two levels, there would be two lines in the regression: parallel if there
is no interaction effect; two different slopes if there is an interaction effect.

The ToothGrowth data frame in R concerns the length of odontoblasts, cells connected with the growth of
teeth, in a sample of 60 guinea pigs. One of three dose levels of vitamin C were supplied to the guinea pigs in one
of two forms: supp = VC refers to ascorbic acid and supp = OJ refers to orange juice. Figure 7.1 displays
the data, using the xyplot () function from the lattice package (Sarkar, 2008).

library (lattice)
xyplot (len = sqrt (dose) |supp, data = ToothGrowth)

The figure shows that there are possibly two different lines relating length to vitamin C dose; it is possible that
there is a treatment effect.
We use 1m () to check this, first by allowing for two intercepts and two slopes:

TG.1lm <- 1lm(len ~ sqgrt(dose)xsupp, data = ToothGrowth)
summary (TG. 1lm)

#4

## Call:

## lm(formula = len ~ sqgrt(dose) #* supp, data = ToothGrowth)
#4

## Residuals:

#4# Min 10 Median 30 Max

## -7.987 -2.677 -0.172 2.738 7.413

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])
## (Intercept) 2.48 2.63 0.94 0.350
## sqgrt (dose) 17.48 2.43 7.18 1.7e-09
## suppvC -12.02 3.72 -3.24 0.002
## sqgrt (dose) :suppVC 8.00 3.44 2.33 0.024
##

## Residual standard error: 3.87 on 56 degrees of freedom
## Multiple R-squared: 0.758,Adjusted R-squared: 0.745
## F-statistic: 58.3 on 3 and 56 DF, p-value: <2e-16

Looking at the interaction between the square root of dose and supp, we see a fairly small p-value which is
highly suggestive of different slopes. There is no reason to consider the model without different slopes (which
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Figure 7.1: Tooth growth data: length of tooth versus square root of vitamin C dose, for each of the two treatment
methods.

would have been obtained by replacing the » with +). The value 8 indicates that for VC, the slope is 8 units higher
than for 0J: 17.48 + 8 = 25.48. The intercept for VC is 12.02 units lower: 2.478 — 12.024 = —9.546.

We can graphically summarize the data with a simple scatterplot with the lines overlaid:
plot (len = sqrt(dose), pch = as.numeric (supp), data = ToothGrowth)
abline (2.478, 17.479)
abline (2.478-12.024, 17.479 + 8, lty=2)

Exercises

1. Fit the model with two parallel lines to the tooth growth data. What are the intercepts for the VC and OJ
lines? What is the slope? Plot the data with the two lines overlaid.

2. Consider the data in airquality which relate to Ozone levels in New York. Construct a model which
relates Ozone level to temperature and wind, taking Month into account, as a factor. Is there evidence that
Month should be included in the model? Is there an interaction between Month and wind? between Month
and temperature?
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Figure 7.2: Tooth growth data: length of tooth versus square root of vitamin C dose, for each of the two treatment
methods. The solid line corresponds to the orange juice treatment, and the dashed line corresponds to the ascorbic
acid treatment
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Logistic Regression

8.1 Modelling binary responses

The datain p13. 1 in the MPV package describes successes and failures of surface-to-air missiles as they relate to
target speed. The data are plotted in Figure 8.1, with successes on the vertical axis being represented by a ‘1’ and
failures being represented by a ‘0.

Such binary data are not nearly normally distributed, so it the efficacy of least-squares becomes very question-
able here. In this section, we indicate what could and should not be done with least-squares for such data.

library (MPV)
plot (pl3.1, xlab = "target speed", ylab = "success/failure")

The first observation to make is that fitting a straight line to such data makes no sense, since the plotted points
do not at all scatter about such a line. Furthermore, if such a line were to be fit to the data, it would necessarily
take values outside the interval [0, 1] on subsets of the domain; interpretation of such values would be difficult.
In fact, the preferred interpretation of output arising from the fitting of models to such data is that of probability.
That is, useful models can provide answers to questions such as, “What is the probability of success at a given
target speed?” Since probabilities must lie within the interval [0, 1], we must consider models based on nonlinear
functions.

There are many functions which have values in [0, 1]. For example, the absolute value of the sine function is
a candidate. Such a function might be appropriate if there were oscillatory or periodic behaviour to be modelled,
but often, the desired model behaviour is monotonic (either increasing or decreasing). For the current example, we
might reasonably believe that the probability of success decreases as target speed increases.

Perhaps the most popular function for this purpose is the logistic function

The function is sketched in Figure 8.2.
curve (exp(x) /(1 + exp(x)), from = -3, to = 3, ylab="p(x)")

A bit of algebra allows us to express x in terms of p, yielding the logit function:

{(p) = log (ﬁp) :

While p is restricted to take values between 0 and 1, the logit function can take any possible value, so relating the
logit function to a straight line or other linear combination is a possibility. For example,

Up(z)) = Bo + iz

which means that we can express the probability of an event in terms of a covariate x, using a linear function, but
the probability is related to the linear function through the logit. This kind of model where a linear function of
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Figure 8.2: The logistic function.
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the covariate(s) is related to a function of the expected response is called a generalized linear model. The logit is
an example of a link function, since it links the expected response, in this case the probability p(z) to the linear
function of the covariate(s). Other link functions that are popular are the probit, and the complementary log-log.
The probit is the inverse of the normal probability distribution function. All of these alternatives are available for
use in the glm () function through the binomial () family function.

To fit the logistic regression model to the missile success data, try

pl3.glm <- glm(y ~ x, data = pl3.1, family = binomial)
summary (pl3.glm)

##

## Call:

## glm(formula = y ~ x, family = binomial, data = pl3.1)
##

## Deviance Residuals:

#4 Min 10 Median 30 Max

## -2.062 -0.487 0.392 0.548 2.168

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z])
## (Intercept) 6.07088 2.10900 2.88 0.0040
## x -0.01770 0.00608 -2.91 0.0036
##

## (Dispersion parameter for binomial family taken to be 1)
#4

## Null deviance: 34.617 on 24 degrees of freedom

## Residual deviance: 20.364 on 23 degrees of freedom

## AIC: 24.36

#4

## Number of Fisher Scoring iterations: 4

Note that we did not specify the link function; the default choice with the binomial family is the logit.

The Coefficient part of the output tells us that the logit of the probability of success as a linear function of target
speed has intercept 6.07 and slope -.0177. Standard error estimates for these parameter estimates are supplied and
indicate, in particular, that the slope is clearly negative.

The line itself is not as interesting as the estimated logistic curve which is plotted in Figure 8.3 together with
the original data. The curve can now be used to read off specific probabilities of success at the various speeds. Note
that in order to obtain the curve, we have used the predict () function with type = "response"; without
specifying t ype, the default is to use the predictions on the linear scale.

plot (p13.1, xlab = "target speed", ylab = "success/failure")

newspeeds <- 200:500

lines (newspeeds, predict (pl3.glm, newdata=data.frame (x = newspeeds),
type = "response"))

Other features of the glm () output should be discussed. The dispersion parameter has been taken to be 1.
We are assuming that there is no clustering in the data which would have possibly led to overdispersion: the case
where the variance exceeds what would be expected under a binomial model. If there is a belief that clustering is
occurring (not likely in this example), the quasibinomial family should be used instead.

The null deviance refers to a quantity that is calculated for a model that does not include the covariate, in this
case speed. You can view it and the residual deviance as a generalization of the notion of sum of squares. The
residual deviance is calculated for the model which includes the covariate and is considerably smaller than the
null deviance, suggesting that the covariate is making a difference to the model fitting. This agrees with the small
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Figure 8.3: Surface-to-air missile successes (1) and failures (0) as they relate to target speed (in knots) with overlaid
logistic curve.

p-value, but the comparison with the degrees of freedom, 23, is additionally useful. Under the assumption that the
model is correct, the expected value of the residual deviance should be the number of degrees of freedom. Here it
is a bit below the degrees of freedom, but not too far off. This is suggestive of a well-fitting model.

8.2 Presence-absence data

The frogs data in the DAAG library contains data on the presence or absence of Southern Corroboree frogs at
a number of locations in the Snowy Mountains. Presence is coded as 1 and absence is coded as 0. A number of
other covariates are recorded, including distance to nearest extant population, NoOfPools - the number of
potential breeding pools, meanmin - the mean minimum Spring temperature, and meanmax - the mean maximum
Spring temperature. Other variables are also listed, but we will focus on these in order to model the probability of
detecting the presence of a frog at a given location:

library (DAAG)

frogs.glm <- glm(pres.abs =~ log(distance) +
log (NoOfPools) + meanmin + meanmax, family = binomial, data = frogs)

summary (frogs.glm)

##

## Call:

## glm(formula = pres.abs ~ log(distance) + log(NoOfPools) + meanmin +
## meanmax, family = binomial, data = frogs)

#4#

## Deviance Residuals:

## Min 10 Median 30 Max

## -1.975 -0.722 -0.278 0.797 2.574
##
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## Coefficients:

## Estimate Std. Error z value Pr(>]|z])
## (Intercept) 18.527 5.267 3.52 0.00044
## log(distance) -0.755 0.226 -3.34 0.00084
## log (NoOfPools) 0.571 0.215 2.65 0.00800
## meanmin 5.379 1.193 4.51 6.5e-06
## meanmax -2.382 0.623 -3.82 0.00013
##

## (Dispersion parameter for binomial family taken to be 1)
#4

#4 Null deviance: 279.99 on 211 degrees of freedom
## Residual deviance: 197.66 on 207 degrees of freedom
## AIC: 207.7

#4

## Number of Fisher Scoring iterations: 5

The fitted model is

—

logit(p) = 18.5 — .7551og(d) + 0.57log(NN) + 5.38min — 2.38max

where d is distance, N is number of pools and min and max refer to the mean minimum and mean maximum
temperature variables.

The residual deviance is 197.7 on 207 degrees of freedom which is a reasonable value. Thus, the model appears
to be an adequate summary of the data.

8.3 Contingency tables

Binary responses are actually coded categorical variables with 2 levels, and when the covariates are also categorical
variables, one can use contingency table analysis. In fact, contingency tables can handle categorical responses with
more than 2 levels.

The basic idea of contingency table analysis is to compare the observed counts in the cells of a table with what
might be expected if the response and covariates were independent.

An example of a table is counts of individual males by eye color and hair color:

HairEyeColor[,,1]

## Eye

## Hair Brown Blue Hazel Green
#4# Black 32 11 10 3
## Brown 53 50 25 15
## Red 10 10 7 7
## Blond 3 30 5 8

For example, 32 males in the sample had Brown eyes and Black hair. We can use R to compute the expected
counts under the assumption eye color and hair color are not associated:

HE.chisg <- chisq.test (HairEyeColor[,,1])

## Warning in chisqg.test (HairEyeColor([, , 1]): Chi-squared approximation may
be incorrect

HE.chisg$expected
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## Eye

## Hair Brown Blue Hazel Green
#4# Black 19.670 20.272 9.4337 6.6237
## Brown 50.229 51.767 24.0896 16.9140
## Red 11.943 12.308 5.7276 4.0215
## Blond 16.158 16.652 7.7491 5.4409

Thus, under the assumption of independence, instead of 32 Brown-eyed Black-haired males in a sample of
this size, we would expect 19.67 and so on. The discrepancy between 32 and 19.67 and all other discrepancies
are aggregated into a statistic which is compared with a chisquare distribution in order to obtain a p-value which
quantifies the evidence against the hypothesis of no-association.

For this problem, there is a warning suggesting that some of the cells are too small and that the test may not be
accurate, so a simulation method can be employed to make the test result more accurate:

HE.chisg <- chisq.test (HairEyeColor[,,1], simulate.p.value = TRUE)
HE.chisqg

##

## Pearson's Chi-squared test with simulated p-value (based on 2000
## replicates)

##

## data: HairEyeColor[, , 1]

## X-squared = 41.3, df = NA, p-value = 5e-04

The p-value is very small indicating that there is evidence of an association between hair and eye color for
males.

Exercises

1. Estimate the logit of the probability of missile success at a speed of 400 knots. Calculate the probability of
missile success. (For this, you can either use the logistic formula, or the predict () function in R, using
the correct type.)

2. The p13. 2 data frame in the MPV package has 20 observations on home ownership as it relates to family
income. Fit a logistic regression model to the data and use the output to
(a) identify the logit of the probability of home ownership as a linear function of family income.
(b) determine if the logistic model is reasonable.
(c) estimate the probability that a family with an income of $40000 owns their home.

3. The datain HairEyeColor[,, 2] concern hair and eye color for a sample of females. Conduct a test to
see if hair and eye color are associated.
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First Steps to Programming in R

9.1 Flow control in R

There are several functions that control how many times statements are repeated. We will describe the for () and
if () functions here.

9.1.1 The for () function

The for () function allows us to repeat a command a specified number of times.
Syntax:

for (i in indices) {commands}

This sequentially sets a variable called i equal to each of the elements of indices. For each value of i, the
listed commands are executed.

Example 9.1 We can add the elements of a vector using the sum () function, but if we want to add up a sequence
of vectors, we might do it with a for loop.

Suppose we want to simultaneously add 1 + 2 4+ 3 + ... + 100 and 12 + 22 4 - .- + 1002. In other words, we
want to add vectors of the form [i 2], fori = 1,2,...,100. We will store our result in a vector called sums, and
we will start by assigning [0 0] to sums and sequentially adding vectors [1 1], [4 4], and so on:

sums <- ¢ (0, 0)
for (i in 1:100) {

sums <— sums + c (i, 1i72)
}

sums

#4# [1] 5050 338350

Example 9.2 Simulating normal random variables is possible in a variety of ways. If we add up 12 uniform
random variables on [—.5,.5], we can get a sum that follows a close approximation to the standard normal dis-
tribution. We will use a fox () loop to construct a large vector of such values so that we can draw a histogram
and QQ-plot, to verify that we have succeeded in simulating normal random variables. We initially assign 0 to our
outcome vector Z. Then we successively add a uniform vector of size N = 10000 to z, 12 times.

Z <= 0; N <= 10000

for (i in 1:12) {
U <- runif (N, min=-.5, max=.5)
Z <- 72 + U

52
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Figure 9.1: Histogram and QQ-plot of the data simulated from sums of independent uniform random variates.

The histogram and QQ-plot of these simulated data are given in Figure 9.1, the result of executing the following
code.

par (mfrow=e(1l,2), mar=c(4, 4, .1, .1))
hist (Z)
qgnorm(Z); qqgline (Z)

In theory, the mean of random variables like Z should be 0, and the standard deviation should be 1. In fact,
for our simulated sample, the values of the sample mean and standard deviation are:

mean (7)
## [1] 0.0036822
sd (Z)

## [1] 1.0093

Different samples would have slightly different means and standard deviations, but all would be pretty close to
0and 1.

Example 9.3 Summing squared standard normal variables gives chi-squared random variables. If Z is a standard
normal random, then X = Z?2 is called a chi-squared random variable on 1 degree of freedom.

The distribution of a sample of chi-squared random variates on 1 degree of freedom is pictured in Figure 9.2,
the effect of executing the following code:

X <- 7°2; hist(X)
T is an example of a skewed distribution. Most of the values are near 0, but there are a few very large values. If
Zy1, 2, ..., Zy are independent standard normal random variables, then the sum of their squares is a chi-squared

random variable on k degrees of freedom.

Example 9.4 We can use nested for () loops to simulate these sums of squared normals. For example, suppose
k = 7 as in the following:
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Figure 9.3: Histogram of simulated chi-square variates on 7 degrees of freedom.
X <=0
for (i in 1:7) {
Z <=0
for (j in 1:12) {
U <- runif (N, min = -.5, max = .5)
Z <- 72 + U
}

X <= X + 272

Figure 9.3 shows what a chi-squared distribution on 7 degrees of freedom looks like. It is skewed, but not as
much as when the number of degrees of freedom is smaller.

par (mar=c (4, 4, .1, .1))
hist (X, main="")

9.2 The if () statement
The i £ () statement allows us to control which statements are executed.
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Syntax:

if (condition) {commands when TRUE}
if (condition) {commands when TRUE} else {commands if FALSE}

This statement causes a set of commands to be invoked if condition evaluates to TRUE. The else part
is optional, and provides an alternative set of commands which are to be invoked in case the logical variable is
FALSE.

9.2.1 The if () statement: Caution!

Be careful how you type the e1se statement. Typing it as

if (condition) {commands when TRUE}
else {commands when FALSE}

may produce an error, because R will execute the first line before you have time to enter the second. If these two
lines appear within a block of commands in curly brackets, they won’t trigger an error, because R will collect all
the lines before it starts to act on any of them. To avoid this kind of difficulty, use the form

if (condition) {
commands when TRUE
} else {
commands when FALSE

9.2.2 The if () statement: Another Warning

R also allows numerical values to be used as the value of condition. These are converted to logical values
using the rule that zero becomes FALSE, and any other value becomes TRUE. Missing values are not allowed for
the condition, and will trigger an error.

Example 9.5 x <- 3
if (x > 2) y <- 2 » x else y <- 3 % x

Since x > 2 is TRUE, vy is assigned 2 = 3 = 6. Ifit hadn’t been true, v would have been assigned the
value of 3 * x.

9.3 Functions

As we have seen, R calculations are carried out by functions, and graphs are produced by functions.
The usual composition of a function is

* a header that includes the word function and an argument list (which might be empty)
* abody which includes a set of statements enclosed in curly brackets { }.

Function names should be chosen to describe the action of the function. For example, median () computes
medians, and boxplot () produces box plots.

Example 9.6 We will write a function to approximately simulate standard normal random variables. An appro-
priate header for the function could be:
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rStdNorm <- function (n)

Note that this function will take n as an input. The output should be that number of standard normal variates.

At some point in the body of the function there is normally a statement like return (Z) which specifies the
output value of the function. If there is no return () statement, then the value of the last statement executed is
returned.

Example 9.7 In our standard normal simulator, we will want to return a vector of length n. We will use Z as the
name of this object.

rStdNorm <- function (n) {

return (272)
}

Using the sum of uniforms concept from an earlier example, we will use a function body of the form:

Z <- 0

for (j in 1:12) {
U <- runif(n, min = -.5, max = .5)
Z <- %72 + U

}

return (7)

Putting the header and body together, we have the following function:

rStdNorm <- function (n) {
Z <=0
for (j in 1:12) {
U <- runif(n, min = -.5, max = .5)
Z <— 7Z + U

}

return (7)

A trial with 3 values is executed as follows:
rStdNorm (3)

#4# [1] 2.181784 -1.341773 0.058453

Functions may take any number of arguments.

Example 9.8 We can use our new rStdNorm () function inside a function which calculates chi-squared random
variables on k degrees of freedom. Two arguments, n and k will be needed in this function.

rChisqg <- function(n, k) {
X <=0
for (i in 1:k) {
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Z <— rStdNorm (n)
X <— X + 7272

}

return (X)

A trial with k = 17 degrees of freedom, and 2 values is executed as follows:
rChisq(2, 17)

#4# [1] 19.800 10.356

To give the user of a function a hint as to the kind of input that the function is expecting, we may give default
values to some arguments: if the user doesn’t specify the value, the default will be used.

Example 9.9 We could have used the header, i.e. the first line of the function,
rChisg <- function(n, k = 1)
to indicate that if a user called rChisq (10) without specifying k, then it should act as though 'k = 1.

We conclude our brief discussion of functions with a mention of the function’s environment. We won’t give
a complete description here, but will limit ourselves to the following circular definition: the environment is a
reference to the environment in which the function was defined. This has implications for where objects are that
the function can access. Consider the following example.

Example 9.10 A function my fun is created in an environment that does not contain mydata:

myfun <- function() {
mymean <- mean (mydata)
return (mymean)

}

myfun ()
## Error in mean (mydata): object ’‘mydata’ not found
Now, consider what happens when mydata is in the function’s environment:

mydata <- rChisq (4, 1)
myfun ()

## [1] 0.41463

mymean

## Error in eval (expr, envir, enclos): object ’'mymean’ not found

Exercises

1. Consider the faithful data set that is built in to R. It consists of the waiting times until the next eruption
of the Old Faithful geyser in Yellowstone National Park together with the corresponding eruption times. We
might want to predict the waiting time until the next eruption by noting what the current eruption time is.
The scatterplot for these data can be obtained by typing
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plot (faithful)
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A simple way to make predictions from such data is to smooth the scatterplot of the y values that are plotted
against the x values. One way to do this is to use moving averages. In other words, just take averages of y
values that are near each other according to their x values. Join these averages together to form a curve.

In this exercise, you will write a function which outputs a new data frame consisting of a column of equally
spaced x values and a column of corresponding local averages, and which takes the following arguments

» x: the vector of x values

* y: the vector of y values

e x.min: a constant which specifies the left boundary of the plotted curve

e x.max: aconstant which specifies the right boundary of the plotted curve

* window: a constant which specifies the range of the x values used to calculate each of the moving
averages

(a) Write down the header for this function, assuming that the function will be called smoother.

smoother <- function(x, y, x.min, x.max, window) {

(b) The output for this function will be a data frame with 2 columns: x and y, which will correspond to
the y-averages and the corresponding x locations where the averages are taken. Thus, include a line
such as the one at the end of the following body-less function:

smoother <- function(x, y, x.min, x.max, window) {

data.frame (x = xpoints, y = yaverages)

(c) Now, you need to construct the body of the function.

i. Use the seq () function to create a sequence of 401 equally spaced z values, starting at x .min
and ending at x.max. In your function, include a line of code that assigns this sequence to an
object called xpoints.
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smoother <- function (x, y, x.min, x.max, window) {
xpoints <- seq(x.min, x.max, len=401)

data.frame (x = xpoints, y = yaverages)

ii. Usea for () loop to calculate the column of corresponding yaverages. To do this, you need to
first initialize the yaverages object to have the same number of elements as xpoints. Include
the following line in your function:

yaverages <- numeric (length (xpoints))

next, for each value of 4, running from 1 through xpoints, you need to determine which elements
of the original data vector x are close to xpoints[i], so that you can take the average of the
corresponding y values only. In other words, you want to determine the indices of x for which
the absolute value of x — xpoints[i] is less than the window parameter that was specified
in the argument to the smoother () function you are writing.

smoother <- function(x, y, x.min, x.max, window) {
xpoints <- seq(x.min, x.max, len=401)
yaverages <- numeric (length (xpoints))
for (i in 1l:length(xpoints)) {
indices <- which(abs(x - xpoints[i]) < window)
¥

data.frame (x = xpoints, y = yaverages)

iii. Within the for () loop that you just created, add a line of code which assigns the average of the
values in y [indices] to yaverages [i].

smoother <- function (x, y, x.min, x.max, window) {
xpoints <- seq(x.min, x.max, len=401)
yaverages <- numeric (length (xpoints))
for (i in l:length (xpoints)) {
indices <- which (abs (x - xpoints[i]) < window)
yaverages[i] <- mean(y[indices])

}

data.frame (x = xpoints, y = yaverages)

(d) You should now have a working function, provided you have not made any errors. Test out your
function on some artificial data. For example, you might try something like

x <- seq(0, 3, length=20)
y <= x"2 + rnorm(20) # a
plot (x, y) # produ
lines (smoother (x, vy,

~o the scatterolot
e tne s ICTCEerpLot

x.min=0.25, x.max=2.75, window=0.5))
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Try different values of the window parameter, and in particular, see what happens when window is
very close to 0. You should see missing pieces in your smooth curve. Why?

If the window parameter is too close to 0, there will be no data points close enough to some of the
values in xpoints, so you will be averaging no data, thus, there is nothing to plot.

(e) To avoid such a problem, you can include an error message in your function to tell the user that the
window parameter is too small. The stop () function provides such a message and aborts execution
of the function. Within the for loop to your function, include the following lines of code to incorporate
this:

if (length(indices) < 1) {
stop ("Your choice of window width is too small.")
} else {
yaverages[i] <- mean(y[indices])

smoother <- function(x, y, x.min, x.max, window=1l) {
xpoints <- seq(x.min, x.max, len=401)
yaverages <-— numeric (401)
for (i in l:length (xpoints)) {
indices <- which(abs(x - xpoints[i]) < window)
if (length(indices) < 1) {
stop ("Your choice of window width is too small.")
} else {
yaverages[i] <- mean (y[indices])
¥

}

data.frame (x = xpoints, y = yaverages)

(f) Finally, you should have observed that the so-called “smooth” curve is still quite bumpy. To reduce
the bumpiness, we can iterate the smoothing procedure. In other words, we can repeat the smoothing
procedure on the output from smoother (), as follows:

outputl <- smoother (x, y, 0.25, 2.75, window = .5)
output2 <- smoother (outputl$x, outputls$y, 0.25, 2.75, window = .25)

Observe that the window parameter does not have to be the same for each iteration.
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Write a new function called doublesmoother () which takes the same arguments as smoother,
but where window is now assumed to be a vector with 2 elements. The output from doublesmoother ()
should be a data frame consisting of xpoints and yaverages as in smoother () but should be
the result of the second round of smoothing.

doublesmoother <- function(x, y, x.min, x.max, window) {
outputl <- smoother (x, y, x.min, x.max, window[1l])
output2 <- smoother (outputl$x, outputl$y, x.min, x.max, window[2])
output?2

}

(g) Apply the doublesmoother () function to the faithful data frame. Use a window parameter
of 1 unit for the first level of smoothing and a value of 0.1 unit for the second level. Use equally
spaced xpoints in the interval [1.5,5.0]. Note that the x values in this example are obtained using
faithful$eruptions. Overlay a scatterplot of the original data with your smooth curve.

plot (faithful)
lines (doublesmoother (faithfulS$Seruptions, faithful$Swaiting,
1.5, 5.0, e¢(1, 0.1)))

70 90

waiting

50
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(h) Based on your plot, make a prediction about the waiting time for the next eruption if the previous
eruption took 3.25 minutes.
According to the smooth curve, which is an estimate of the expected waiting time to the next eruption
for different eruption times, if the last eruption took 3.25 minutes, we would expect the next eruption to
take place between 70 and 80 minutes later. We can also use the output from doublesmoother ()
to give a point estimate as follows:

faithful.out <- doublesmoother (faithfulS$eruptions,
faithful$waiting, 1.5, 5.0, ec(1, 0.1))
indices <- which (abs (faithful.out$x - 3.25) < .01)

faithful.out [indices, ]

#4# b e v
#4# 200 3.2412 73.425
#4# 201 3.2500 73.662
#4# 202 3.2588 73.887
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From this output, our estimate of the expected waiting time until the next eruption is 73.66 minutes.

2. The p13.1 data frame in the MPV library is concerned with the successes (hits) or failures (misses)
of surface-to-air missiles which are supposed to hit moving targets, and it consists of the following two
columns:

X3
y:

target speed (in Knots)
hit (=1) or miss (=0)

(a) Load the MPYV library and apply the doublesmoother () function to the p13. 1 data frame. Use a

window parameter of 100 units for the first level of smoothing and a value of 30 units for the second
level. Use equally spaced xpoints in the interval [210,490]. Note that the = values in this example
are obtained using p13.15$x. Overlay a scatterplot of the original data with your smooth curve.

library (MPV)

plot (y © x, data = pl3.1)
lines (doublesmoother (p13.15x, pl3.1%y, 210, 490, window=ec (100, 30)))
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(b) Based on your output, make a rough guess as to the expected proportion of times the missile would hit

a target moving at a speed of 350 knots.

According to the graphed curve, the value of y is near 0.5, when x = 350, so we would estimate the
expected proportion of hits to be 0.5.
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First Steps to Writing a Package

R packages are useful from the standpoint of extending the capabilities of R; we all benefit from the efforts of others
who have taken the time to bundle up their code in a minimally user-friendly way, together with documentation,
so that we can run various statistical procedures without writing our own code from scratch. Often, however, we
find that a package doesn’t quite do what we need without some modification, and there are still times when there
is nothing available to meet our particular needs. Naturally, we start to write our own code to solve the problem
or problems that we face, sometimes bundling the code into useable functions. When the number of functions and
scripts becomes somewhat unmanageable, the R packaging format presents a way to keep everything organized.
And if we have put together a package that is useful for ourselves, it is likely to be useful to someone else in the
world. At that point, it is worth considering publishing it on CRAN or some other publicly available site.

In this chapter, we go through the basic steps of constructing a package, via an example where 4 functions and
1 data set are to be combined into a single package and prepared for submission to CRAN.

10.1 The functions and data

The functions that will make up the package are designed to simulate mixtures of ¢ random variables (rtmix () ),
calculate quantiles (qtmix () ), calculate densities (dtmix () ) and probabilities (ptmix () ):

rtmix

## function (n, df, ncp, PI)

## {

#4# B <- rbinom(n, 1, PI)

#4# B * rt(n, df[l], ncpl[l]) + (1 - B) * rt(n, df[2], ncpl2])
## )

## <environment: namespace:tmix>
gtmix

## function (p, df, ncp, PI, lower.tail
#4+ {

= TRUE, tol = 1le-07)

#4 if (length(df) != 2)

## stop ("This function requires exactly 2 degree of freedom parameters")
## if (length (ncp) != 2)

## stop ("This function requires exactly 2 noncentrality parameters.")
#4 q <- (gqt(p, df[l], ncpl[l], lower.tail) + qgt(p, dfl[2], ncpl2],

## lower.tail)) /2

#4 h <- function (g, df, ncp, PI, p, lower.tail) {

## p — ptmix (g, df, ncp, PI, lower.tail)

#4 }

#4 hprime <- function(x, df, ncp, PI, lower.tail) {

#4# if (lower.tail) {

63
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#4# —-dtmix (g, df, ncp, PI)

## }

## else {

## dtmix (q, df, ncp, PI)

## }

## }

#4 while (max (abs(h(g, df, ncp, PI, p, lower.tail))) > tol) {
## q <- q - h(g, df, ncp, PI, p, lower.tail)/hprime (g, df,
#4F ncp, PI, lower.tail)

#4# }

## return (q)

#4+ }

## <environment: namespace:tmix>
dtmix

## function (x, df, ncp, PI)

## {

## PI * dt(x, df[1], ncpll]) + (1 - PI) % dt(x, df[2], ncpl2])
## 0}

## <environment: namespace:tmix>
ptmix

## function (g, df, ncp, PI, lower.tail = TRUE)

## {

## PI * pt(g, df[l], ncpll], lower.tail) + (1 - PI) * pt(g,
## df[2], ncpl[2], lower.tail)

## 0}

## <environment: namespace:tmix>
The data file is called simdata:

str (simdata)

## 'data.frame': 200 obs. of 2 variables:
## S x: num -0.043 -1.211 -1.079 -0.383 -1.381
## $ y: num -0.748 -2.713 -2.518 -3.78 -2.62

10.2 Building the package directory

Since the functions have to do with a 2-component mixture of ¢ random variables, we will name the package tmix,
and our first step in package construction is to create a package directory which has that name.
Within the fmix directory, we minimally require the following:

» A DESCRIPTION file.
* A NAMESPACE file.
* A man directory.
In addition, we need at least one, usually both of the following
* An R directory.
* A data directory.
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10.3 The R and data directories

For our example, we will simply copy the four function files into the R subdirectory, calling them gtmix.R,
rtmix.R, dtmix.R and ptmix.R. The data, stored in a file named simdata.R will be copied into the data subdi-
rectory.

10.4 The DESCRIPTION file
Possible contents for the DESCRIPTION are as follows:

Package: tmix

Title: Mixtures of t Distributions

Version: 1.0

Author: W.J. Braun

Description: Functions for computing densities, probabilities,
and quantiles of a mixture of t distributions as well as a function
for simulating variates from such a mixture.

LazyLoad: true

LazyData: true

ZipData: no

Maintainer: W.John Braun <john.braun@ubc.ca>

License: GPL (>= 2)

The contents of the Description should all be on one line. Multiple lines are used here for display
purposes only.

10.5 The NAMESPACE file

Briefly put, this file is needed in order that you don’t have to worry that the names you choose for your
functions or data sets will conflict with names of functions and data sets from other packages - without a
warning.

importFrom("stats", "gt", "dt", "pt", "rt", "rbinom")
exportPattern(".")
export ("dtmix", "ptmix", "gtmix", "rtmix")

Note that we have not included our data file in the export list, only the functions. Note, also, that we have
included all 4 of our functions in the export list. If we had held one back, the package user would not have
direct access to that function.

10.6 The help directory: man

The man directory will contain 5 files, named gtmix.Rd, rtmix.Rd, dtmix.Rd, ptmix.Rd and simdata.Rd.
The contents of gtmix.Rd are to be as follows:

\name {gtmix}

\alias{gtmix}

\title{Quantile of Mixture of t Distributions}

\description{

Quantile function for a 2-component mixture of t distributions
with 'df' degrees of freedom and non-central parameter 'ncp'.
}

\usage{qgtmix (p, df, ncp, PI, lower.tail = TRUE, tol = le-7)}
\arguments {
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\item{p}{a vector of probabilities.}
\item{df}{a vector (length 2) of degrees of freedom.}
\item{ncp}{a vector (length 2) of noncentrality parameters.}
\item{PI}{a numeric constant giving the mixture parameter.}
\item{lower.tail}{a logical constant which is TRUE if the lower tail
quantiles are required.}
\item{tol}{a control parameter for the accuracy imposed on the quantile
calculation.}
}
\value{A vector of quantiles.}
\details{The quantiles are obtained by employing a Newton-Raphson
iteration to solve the inverse problem.}
\references({

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) _Continuous
Univariate Distributions_, volume 2. Wiley,
New York.

}
\author{W.J. Braun}
\seealso{\code{\link{qgt}}}
\examples {
gtmix(c(.1, .3, .6), df=c(2, 7), ncp=c(-4, 0.5), PI = 0.75)
}
\keyword{distribution}

Most of the above contents are required, with the exception of the following: details, seealso, references,
author and examples. Obviously, these options are really required as necessary and the more detail that

is included, the better.

The contents of simdata .Rd are to be as follows:

\name {simdata}
\alias{simdata}
\title{ Simulated Data }
\usage{data (simdata) }
\description{
The \code{simdata} data frame has 200 rows and 2 columns. The 'x'
column is simulated from a standard normal distribution and the
'y' column is simulated from a 2 component mixture of centered
t random variates on 3 and 20 degrees of freedom with a mixing
proportion of 0.1 added to the values of 'x' offset by -1.
}
\format {
This data frame contains the following columns:
\describe/{
\item{y}{a numeric vector}
\item{x}{a numeric vector}

}

\source({

Braun, W.J. (2019)

}

\examples {

plot (simdata)

simdata.lm <- Im(y ~ x, data = simdata)
abline (simdata.lm)
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ggnorm(resid(simdata.lm))
ggline (resid(simdata.lm))

}
\keyword{datasets}

10.7 Other pieces

The gtmix () function invoked a Newton-Raphson iteration to solve the required inverse problem. Since
this iteration requires a loop, it may have been better to write the code into a C or Fortran program that would
be called from R. If this had been done, the external code would be written in the form of a subroutine or
collection of subroutines and stored in an additional directory called src. Special commands are required
within the R functions (e.g. gtmix ()) which would need to access the external code. The R manual has
more information on this.

10.8 Building, checking and submitting

Once the pieces of the package are assembled, it is necessary to build the package. In RStudio, this is fairly
straightforward. At the command line (Mac, Linux or Cygwin in Windows), we would type

R CMD build tmix
To check that the package components are properly constructed, we next type
R CMD check tmix

It is usually advisable to build and check the package as it is being constructed, instead of waiting until all
the pieces have been assembled.

Before submitting the package to CRAN, we need to do a more thorough check as follows:
R CMD check —--as-cran tmix

This last check is to be done using the most recent development version of R. Before submitting to CRAN,
the submittor should check the R manual to ensure that all requirements have been met.

The final steps in the submission can be carried out at https://cran.r-project.org/submit.
html.
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First Steps to Shiny Apps

In this chapter, again designed essentially as a “do-it-yourself” exposition, you will learn the basics of Shiny
apps that can be run on the web through a sequence of steps.

1. Install the shiny package into R:

install.packages ("shiny")

2. Download the files server.R and ui.R in the folder called barChart, and locate them in a folder also
called barChart which should be located in R’s current working directory on your system. These files
contain code for a shiny app which can be run on a webserver for creation of bar charts. From within
your R session, open the shiny app in a web browser by typing

runApp ("barChart/")

3. Download the files server.R and ui.R in the folder called dotChart, and locate them in a folder also
called dotChart which should be located in R’s current working directory on your system. These files
contain code for a shiny app which can be run on a webserver for creation of bar charts. From within
your R session, open the shiny app in a web browser by typing

runApp ("dotChart/")

4. Study the dotChart server.R and ui.R files carefully, and use them as a guide for updating the corre-
sponding files in barChart so that the bar chart app has an option for including a title and x-axis labels.
The server and ui files become:

server <-— function(input,output){
output$main_plot <— renderPlot ({
data <- input$datavalues
data <- as.numeric (strsplit (data, " ") I[I[
labels <- strsplit (input$labels, " ") [[1
plotTitle <- inputS$title
names (data) <- labels
barplot (data)
title(plotTitle)
3]
}

ui <- shinyUI (pageWithSidebar (
headerPanel ("Bar Chart"),

sidebarPanel (
textInput ("datavalues", "Enter your data (e.g. counts) here:", "1"),
textInput ("labels", "Enter the category labels here:", "A"),

(
textInput ("title", "Enter the plot title here:", "Bar Chart")
)y
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mainPanel (
plotOutput (outputId='main_plot')
)
)
)

5. Create a new folder called scatterPlot, copying the server.R and ui.R files into it. Modify these two files
appropriately, so that you obtain a new app which is capable of producing a scatter plot of user supplied
data.

The server and ui files are:

server <-
function (input, output) {
output$main_plot <- renderPlot ({
datax <- input$xdatavalues

x <- as.numeric (strsplit (datax, " ")[[1]1])
datay <- input$ydatavalues
1)

y <- as.numeric (strsplit (datay, " ")I[I[1
ylabel <- strsplit (input$labels, " ") [[
plotTitle <- inputS$title

plot(y ~ x, las = 1, ylab=ylabel)
title(plotTitle)

lines(y ~

]
171
X)

ui <- shinyUI (pageWithSidebar (
headerPanel ("Scatterplot"),
sidebarPanel (
textInput ("xdatavalues", "Enter your data (x) here:", "1"),
textInput ("ydatavalues", "Enter your data (y) here:", "1"),
textInput ("labels", "Enter the y-axis label here:", "A"),
textInput ("title", "Enter the plot title here:", "Scatterplot")
)I
mainPanel (
plotOutput (outputId="'main_plot"')
)
)
)

Note that the 1as parameter controls the orientation of the axis labels.

6. The data in gas.txt are octane ratings for a collection of aliquots of gasoline. Create a shiny app that
constructs a boxplot of the data, and use that app to explore the data. Given what octane ratings would
be expected to be, for premium gasoline, what does the boxplot reveal about the data?

The server and ui files are:

server <-
function (input, output) {
output$main_plot <- renderPlot ({
datax <- input$xdatavalues

X <- as.numeric (strsplit (datax, " ")[[1]])
datay <- input$ydatavalues
1)

y <- as.numeric (strsplit (datay, " ")I[I[1
[

]
ylabel <- strsplit (input$labels, " ") [[1]]



70

CHAPTER 11. FIRST STEPS TO SHINY APPS

plotTitle <- inputs$title
plot(y = x, las = 1, ylab=ylabel)
title(plotTitle)
lines(y =~ x)
13)
}

ui <- shinyUI (pageWithSidebar (
headerPanel ("Scatterplot"),
sidebarPanel (
textInput ("xdatavalues", "Enter your data (x) here:", "1"),
textInput ("ydatavalues", "Enter your data (y) here:", "1"),
textInput ("labels", "Enter the y-axis label here:", "A"),
textInput ("title", "Enter the plot title here:", "Scatterplot")
)I
mainPanel (
plotOutput (outputId='main_plot')
)
)
)

The boxplot reveals an outlier with an octane rating well outside the values expected for premium gaso-
line.

. Repeat the preceding exercise using the hist () function. This time, remove the extreme outlier, so

that you can properly visualize the distribution of the octane measurements.
The server and ui files are:

server <-—
function (input, output) {
output$main_plot <- renderPlot ({

data <- input$datavalues
xlabel <- input$label
x <- as.numeric (strsplit (data, " ")I[[1]1])
xlabel <- strsplit (xlabel, " ")[[1]]
plotTitle <- inputs$title
hist (x, main="", xlab=xlabel)
title(plotTitle)

h
}

ui <- shinyUI (pageWithSidebar (
headerPanel ("Histogram"),
sidebarPanel (
textInput ("datavalues", "Enter your data here:", "1"),

textInput ("label”, "Enter the x axis label here:", "x"),
textInput ("title", "Enter the plot title here:", "Histogram")
),
mainPanel (

plotOutput (outputId="'main_plot')
)
)
)

. Reactivity. One feature of shiny apps is the ability to cache information and update the cache only when

necessary. We illustrate this feature with a very simple app that tests ones ability to discern complete
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randomness from more structured data.

Download the files server.R and ui.R in the folder called checkl as well as the server and ui files in the
check folder. Try the app in checkl first to see how the app should properly run - with reactivity. Then
try the check app in which the reactive expression has been removed. Do you see the difference?

The server file for the version for which the data do not change when the grid lines are added is as
follows:

shinyServer (function (input, output,session){

seed <- reactive ({
return (
seedO=sample (100:2000, 1, replace=TRUE)
)
b

observe ({
if (as.numeric (input$run)==0] | input$len==0) return (NULL)
isolate ({
updateCheckboxInput (session, 'gridlines', 'Show gridlines', FALSE)
3]
)

output$main_plot <- renderPlot ({

par (mfrow=ec(2,1), mar=c(rep(.5, 4)))

seed0<—seed ()

set .seed (seed0)

m=sqgrt (input$len)

n <- input$len

<- rep(0: (m-1), each=m)/m

<- rep(0: (m-1), times=m)/m

<— runif(n, s + 1/ (m*10), s + 9/ (m*10))

<— runif(n, t + 1/ (m*10), t + 9/ (m*10))

plot (x, y, pch=20, xaxs="i", vyaxs="i", xl1lim=0:1, ylim=0:1)
x <- runif(n); vy = runif (n)

plot (x, vy, pch=20, xaxs="1i", yaxs="i", x1lim=0:1, ylim=0:1)

KX ot !

if (input$gridlines){
set.seed (seed0)
s <- rep(0: (m-1), each=m)/m
t <- rep(0: (m-1), times=m)/m
X <— runif(n, s + 1/ (mx10), s + 9/ (m%x10))
y <— runif(n, t + 1/(mx10), t + 9/ (mx10))
par (mfg=c(1,1))
abline(h = (1:(m-1))/m, col="green")
abline(v = (l1:(m-1))/m, col="green")

par (mfg=c(2,1))

x <— runif (n); y runif (n)

abline(h = (1:(m-1))/m, col="green")
abline(v = (l1:(m-1))/m, col="green")
invisible ()
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1)

2]

This version of the app uses the reactive function to set the seed for the random number generator. This
is the version of the app that stores this information and only updates when the user asks for a different

number of plotted points.
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