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Preface

This short book uses R and several examples to illustrate common statistical situations or vignettes. After a
short mention of R and RStudio, the book launches into brief discussions of correlation, contingency tables,
t-tests, ANOVA, simple and multiple regression. The assumption of independence between observations is
key to the success of these methods, and the assumption of normality also gives many of these methods their
mathematical accuracy.

Classical nonparametric methods will also be described as well. These methods are often over-rated, or
more accurately, the methods they replace may be under-rated in terms of their robustness to model misspec-
ification. The nonparametrics are not a panacea and really only alleviate misspecification of normality, which
is often not a critical assumption.

A vastly more important nonparametric method is bootstrap resampling (and this has recently been recog-
nized through the awarding of the International Statistics Prize in 2018 to Bradly Efron, for his seminal 1979
paper in the area). In order to understand bootstrapping, and as an aid in understanding much of statistical mod-
elling if one wants to avoid the mathematics, simulation is a very useful tool. Notes on the use of simulation
tools find their place in the pages that follow.
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1
An Overview of R

R is based on the computer language S, developed by John Chambers and others at Bell Laboratories in 1976.
Robert Gentleman and Ross Ihaka developed an implementation, and named it R. Gentleman and Ihaka made
it open source in 1995, and hundreds of people around the world have contributed to its development.

Although it may be hard for students with little mathematical or computing background to believe, R and
RStudio are actually quite friendly tools, but becoming acquainted with them requires a bit of effort. A few
hours of playing with R code is all that is really required to achieve modest expertise. Perhaps the most
important thing to remember is that there is nothing wrong with making errors when using a programming
language like R. You learn from your mistakes, and there is no harm done. Experimentation is the key to
learning R, just as it has been the key to science for the past 400 years.

1.1 Downloading and Installing R and RStudio

R can be downloaded for free from http://cloud.r-project.org. A binary version is usually sim-
plest to use and can be installed in Windows and Mac fairly easily. A binary version is available for Win-
dows Vista or above from the web page http://cloud.r-project.org/bin/windows/base. The
“setup program” is usually a file with a name like R-3.4.4-win.exe. Clicking on this file will start an al-
most automatic installation of the R system. Clicking “Next” several times is often all that is necessary in order
to complete the installation. An R icon will appear on your computer’s desktop upon completion.

RStudio is also recommended. You can download the “Open Source Edition” of “RStudio Desktop” from
http://www.rstudio.com/, and follow the instructions to install it on your computer.

1.2 Key Features of R

1.2.1 Packages

You can do many things with base R, but one of the true strengths of R is the availability of add-on packages.
There are literally thousands of packages, i.e. graphics, ggplot2, and MPV. A package contains functions
and data which extend the abilities of R. Every installation of R contains the base packages (e.g. base, stats,
graphics) which are automatically loaded when you start R.

To load an additional package, say, called DAAG, type

library(DAAG)

If you get a warning that the package is can’t be found, then the package doesn’t exist on your computer,
but it can likely be installed. Try

install.packages("DAAG")

In RStudio, use the Packages menu.

2
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1.2.2 Calculations in R

The > sign tells you that R is ready for you to type in a command. For example, you can do arithmetic of any
type, including multiplication:

1111*1111

## [1] 1234321

By hitting the “Enter” key, you are asking R to execute this calculation. Often, you will type in commands
such as this into a script window or “pane”, as in RStudio, for later execution, through hitting “ctrl-R” or
another related keystroke sequence.

You can control the number of digits in the output with the options() function. This is useful when
reporting final results such as means and standard deviations, since including excessive numbers of digits can
give a misleading impression of the accuracy in your results. Compare

583/31

## [1] 18.80645

with

options(digits=3)
583/31

## [1] 18.8

1.2.3 Data frames

Most data sets are stored in R as data frames. These are like matrices, but with the columns having their own
names.

An example of a data frame that is built into R, or at least into the datasets package is women, and it can
be printed to the screen by typing its name:

women

## height weight
## 1 58 115
## 2 59 117
## 3 60 120
## 4 61 123
## 5 62 126
## 6 63 129
## 7 64 132
## 8 65 135
## 9 66 139
## 10 67 142
## 11 68 146
## 12 69 150
## 13 70 154
## 14 71 159
## 15 72 164
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You can obtain information about this data frame by typing help(women). This will be the only time in
these pages that a data frame will be displayed in full. It is unwise to inspect data frames in this way, as it is far
better to use graphical means to display large amounts of data. The summary() function provides numerical
information which is also a better way of determining the main features of a data frame before doing further
exploration of it:

summary(women)

## height weight
## Min. :58.0 Min. :115
## 1st Qu.:61.5 1st Qu.:124
## Median :65.0 Median :135
## Mean :65.0 Mean :137
## 3rd Qu.:68.5 3rd Qu.:148
## Max. :72.0 Max. :164

Columns can be of different types from each other. An example is the built-in chickwts data frame:

summary(chickwts)

## weight feed
## Min. :108 casein :12
## 1st Qu.:204 horsebean:10
## Median :258 linseed :12
## Mean :261 meatmeal :11
## 3rd Qu.:324 soybean :14
## Max. :423 sunflower:12

If you want to see the first few rows of a data frame, you can use the head() function:

head(chickwts)

## weight feed
## 1 179 horsebean
## 2 160 horsebean
## 3 136 horsebean
## 4 227 horsebean
## 5 217 horsebean
## 6 168 horsebean

The tail() function displays the last few rows. The number of rows can be determined using the nrow()
function:

nrow(chickwts)

## [1] 71

Similarly, the ncol() function counts the number of columns.

1.2.4 Reading data into a data frame
You will usually have a data set that you wish to read into R. If you have prepared it yourself, you could simply
type it into a text file, for example called mydata.txt, perhaps with a header indicating column names, and
where you use blank spaces to separate the data entries. The read.table() function will read in the data
for you as follows:
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mydata <- read.table("mydata.txt", header = TRUE)

The object mydata now contains the data read in from the external file. You could use any name that you
wish in place of mydata, as long as the first element of its name is an alphabetic character.

If the data entries are separated by commas and there is no header row, as in the file wxl32006.txt, youwouldtype :

wx1 <- read.table("wx_l3_2006.txt", header=F, sep=",")

Often, your data will be in a spreadsheet. If possible, export it as a .csv file and use something like the
following to read it in.

wx2 <- read.table("wx_l3_fwi_2006-2011.csv", header=F, sep=",")

If you cannot export to .csv, you can leave it as .xlsx and use the read.xslx() command in the xlsx
package.

Most likely, the data file that you have is not very clean in that there could be missing values or blank spaces
in awkward locations, and so on. When reading in a file with columns separated by blanks with blank missing
values, you can use code such as

dataset1 <- read.table("file1.txt", header=TRUE, sep=" ", na.string=" ")

This tells R that the blank spaces should be read in as missing values. Observe the contents of dataset1:

dataset1

## x y z
## 1 3 4 NA
## 2 51 48 23
## 3 23 33 111

Note the appearance of NA. This represents a missing value.
Sometimes, external software exports data files that are tab-separated. When reading in a file with columns

separated by tabs with blank missing values, you could use code like

dataset2 <- read.table("file2.txt", header=TRUE, sep="\t", na.string=" ")

Again, observe the result:

dataset2

## x y z
## 1 33 223 NA
## 2 32 88 2
## 3 3 NA NA

If you need to skip the first 3 lines of a file to be read in, use the skip=3 argument.

1.2.5 Extracting information from data frames
To extract the height column from the women data frame, use the $ operator:
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women$height

## [1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

If you want only the chicks who were fed horsebean, you can apply the subset() function to the
chickwts data frame:

chickHorsebean <- subset(chickwts, feed == "horsebean")
chickHorsebean

## weight feed
## 1 179 horsebean
## 2 160 horsebean
## 3 136 horsebean
## 4 227 horsebean
## 5 217 horsebean
## 6 168 horsebean
## 7 108 horsebean
## 8 124 horsebean
## 9 143 horsebean
## 10 140 horsebean

You can now calculate the mean and standard deviation, and so on, of these weights:

mean(chickHorsebean$weight) # mean

## [1] 160.2

sd(chickHorsebean$weight) # standard deviation

## [1] 38.626

In order to extract the 4th row from the chickHorsebean data frame, type

chickHorsebean[4, ]

## weight feed
## 4 227 horsebean

To extract the element in the 2nd column of the 7th row of women, type

women[7, 2]

## [1] 132

If we want the elements in the 4th through 7th row of the 2nd column of women, we can use

women[4:7, 2]

## [1] 123 126 129 132

Note the use of the : operator:
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4:7

## [1] 4 5 6 7

Another built-in data frame is airquality. If we want to compute the mean for each of the first 4
columns of this data frame, we can use the sapply() function:

sapply(airquality[, 1:4], mean)

## Ozone Solar.R Wind Temp
## NA NA 9.9575 77.8824

The sapply() function applies the same function to all columns of the supplied data frame. Note also
the very useful functions in Wickham’s (2011) plyr package.

1.2.6 Factors
Factors offer an alternative, often more efficient, way of storing character data. For example, a factor with 6
elements and having the two levels, control and treatment can be created using:

grp <- c("control", "treatment", "control", "treatment", "treatment", "control")
grp

## [1] "control" "treatment" "control" "treatment" "treatment" "control"

grp <- factor(grp)
grp

## [1] control treatment control treatment treatment control
## Levels: control treatment

Factors
Consider the built-in data frame InsectSprays

summary(InsectSprays)

## count spray
## Min. : 0.0 A:12
## 1st Qu.: 3.0 B:12
## Median : 7.0 C:12
## Mean : 9.5 D:12
## 3rd Qu.:14.2 E:12
## Max. :26.0 F:12

The second column of this data frame is a factor representing the different types of spray used in the
associated experiment. The levels of this factor can be listed using the levels() function:

levels(InsectSprays$spray)

## [1] "A" "B" "C" "D" "E" "F"

Factors are a more efficient way of storing character data when there are repeats among the vector elements.
This is because the levels of a factor are internally coded as integers.

To see what the codes are for our factor, we can type
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as.integer(InsectSprays$spray)

## [1] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3
## [36] 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6
## [71] 6 6

The labels for the levels are only stored once each, rather than being repeated. We can change the labels for
the factor using the levels() function as follows:

levels(InsectSprays$spray)[3] <- "Raid"

Observe the effect of the change in

summary(InsectSprays$spray)

## A B Raid D E F
## 12 12 12 12 12 12

The levels() function also offers a simple way to collapse categories. Suppose we are interested in
comparing the first three levels with the last three levels. We can create a new factor for this purpose as
follows:

InsectSprays$newFactor <- InsectSprays$spray
levels(InsectSprays$newFactor) <- c("A", "A", "A", "B", "B", "B")

Check the result:

summary(InsectSprays)

## count spray newFactor
## Min. : 0.0 A :12 A:36
## 1st Qu.: 3.0 B :12 B:36
## Median : 7.0 Raid:12
## Mean : 9.5 D :12
## 3rd Qu.:14.2 E :12
## Max. :26.0 F :12

1.2.7 Histograms and simulated normal data
The hist() function can be used to draw histograms, and the rnorm() function can be used to simulate
draws from a normal distribution1

A standard normal random variable has a mean of 0 and a standard deviation of 1. Figure ?? shows the
results from simulating 2000 standard normal variates, together with a plot of the normal probability density
curve, obtained from the dnorm() function. Note that we have used the curve() function with the add
argument to overlay the curve. The col parameter controls the colour.

Z <- rnorm(2000)
hist(Z, prob = TRUE)
curve(dnorm(x), from = -3, to = 3, add = TRUE, col = "blue")

1often used as a model for noise
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Figure 1.1: Histogram of 2000 standard normal random variates with overlaid density curve (in blue).

1.3 Sources of additional information
John Maindonald has written a comprehensive introduction and overview of R which is a very useful reference
for scientists. It can be found at
https://www.researchgate.net/publication/228702931
_The_R_System-An_Introduction_and_Overview

A handy reference card has been constructed by Jonathan Barron and is available at
http://www.psych.upenn.edu/˜baron/refcard.pdf



2
An Overview of Statistical Modelling

To a lot of people, the field of statistics can sound frightening, since the underlying theory is based on some
sophisticated mathematics which is not easily understood. When simplified to the point where most people can
quickly and easily understand, it is then viewed as somewhat boring or unimaginative.

In reality, statistics is an important and powerful discipline which combines elements of art and science.
From a certain perspective, it lies at the heart of the scientific method, since when approached properly, it refines
the beliefs of an investigator who brings a certain level of knowledge (including possible errors in judgement)
about a scientific problem. It does this by allowing the investigator to incorporate new information in the form
of data, which may or may not be in numeric form. By appropriate use of probability, the level of uncertainty
in the conclusions is measured, either through confidence intervals or p-values, or using a fully probabilistic
approach referred to as Bayesian. The latter approach will not be pursued here, although not because it is not
important in its own right.

2.1 Types of Data

Before taking measurements or observations on some type of phenomenon, they are unknown. A useful way of
coping with this lack of knowledge is based on probability. Probability can allow us to quantify our uncertainty
about measurements. For example, before throwing a six-sided die, we know that the number of spots that
we will observe follows a specific probability distribution, and we refer to that number as a random variable,
which we might refer to as Y , and we can say that the probability that Y = 4 is 1/6, and that the probability
that Y = 7 or Y = 1.5 is 0.

The number of spots on the die, Y , is an example of a count, a type of numeric variable. The number of
heads, H , in one toss of a coin is another example of a count, but this time with only two possibilitiesH = 0 or
H = 1. H is an example of a binary random variable or indicator variable. If you think about it, the numbers
0 or 1 are not actually observed, but rather the head or tail. Therefore, the data is, strictly speaking, not of the
form of a numeric variable in this case, but rather a categorical variable, with levels Head and Tail. By using the
random variable H , we have converted the categorical variable to numeric by a particular type of coding, but
note that the coding was arbitrary, since we could have also defined T to be 0 or 1, depending on the number
of tails observed.

Other forms of categorical data are possible as well, such as eye-colour, which might include black, brown,
blue, and other. In this case, we would do the numeric coding using three binary variables, B1, B2 and
B3, where B1 is 1 if the eye-colour is black, and 0, otherwise. B2 = 1 for a brown eye and B2 = 0,
otherwise. B3 = 1 for a blue eye and B3 = 0, otherwise. All other eye colours are coded automatically as
B1 = B2 = B3 = 0.

Another important type of data is continuous data. Continuous variables take on measurements that are not
necessarily counting numbers, and are expressed as decimals. Temperature, height, weight and time are often
thought of as examples of continuous variables. An important distribution for continuous variables is the normal
distribution which gives the familiar symmetric bell-shaped curve. Theoretically, normal random variables can
take on any kind of value, positive and negative, so there are situations where this is clearly not appropriate.
Time-to-event data, such as the time until someone recovers from a disease, or the time until a lightbulb fails,
is a data type which is continuous and where the normal distribution is usually not a good approximation.

10
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Figure 2.1: Box plot of river lengths, on original and log scales.

Sometimes a transformation, such as a log-transformation or a square root transformation yields a new version
of the variable which is better approximated by normality.

2.2 Graphical and Numeric Summaries
An important facet of statistics is univariate analysis, whereby the distribution of a given single random variable
is studied, often through the use of summary statistics, such as the mean, median, standard deviation and so on,
or through the use of graphics, such as the box plot, histogram or dot chart. A bar chart is the most effective way
of conveying categorical data; although pie charts are popular, they have been largely discredited as effective
data analysis tools, and should be avoided.

We briefly consider two examples here.

2.2.1 River Lengths - Numeric
The rivers data set contains the lengths of 141 important or major North American rivers. A quick numeric
summary of these data is obtained through

summary(rivers)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 135 310 425 591 680 3710

A box plot, as shown in the left panel of Figure fig:box, can be constructed using

par(mfrow=c(1,2), mar = c(1, 3, 1, 1))
boxplot(rivers)
boxplot(log(rivers))

boxplot(rivers)

A histogram could be constructed using hist in place of boxplot. Both types of plot reveal a distribution
which is skewed to the right. A normal distribution is not immediately appropriate due to this fact (which is
related to the fact that river length cannot be 0). Taking logs and then computing the box plot gives the graph in
the right panel of Figure 2.1. The result is much more symmetric; the histogram would be hard to distinguish
from a normal distribution.
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black brown blue green

0
20

40

Figure 2.2: Bar chart of brown-haired male eye-colour.

boxplot(log(rivers))

2.2.2 Eye Colour - Categorical Data
A sample of brown-haired males revealed the following eye colour counts:

black brown blue green
53 50 25 15

The table above provides the best form of numeric summary for this kind of data. Converting to percentages
is an equivalent alternative – which hides the total number of data points.

The bar chart is constructed using

barplot(c("black" = 53, "brown" = 50, "blue" = 25, "green" = 15))

2.3 Classifying Basic Models by Data Type
The heart of statistical modelling lies in determining the relationships between different variables. The goals
of statistical analysis are either prediction and explanation. For example, one might want to predict a future
value of a random variable, called the response variable, given values of other variables, variously called
predictor variables, covariates, or explanatory variables. The latter term is more appropriate when thinking of
the modelling problem as one of attempting to explain or understand how the response variable relates or is
associated with the other variables.

The following table may be useful in organizing your thoughts as to the best form of analysis for given
types of data. It is important to remember that this table does not exhaustive of the kinds of statistical analyses
that could be undertaken. The ones listed are the most commonly encountered.

response \ covariates continuous categorical both
continuous regression,

correlation
t-test,
ANOVA,
Wilcoxon,
Sign tests

ANCOVA

categorical logistic contingency
tables

logistic
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Regression refers to both simple and multiple regression (which involves more than 1 covariate). ANOVA
refers to the analysis of variance, whereby means of different treatment groups are constrasted, depending on
the levels or combination of levels from one or more factors. Factors are essentially another way of referring
to categorical variables. Block designs are included in this category, and involve a factor which is not of direct
interest to the scientist but which is known or believed to have an affect on the response. By including blocking
factors in such analyses, more precision (i.e. less uncertainty) can be gained. ANOVA can also be viewed as
a type of regression where the covariates are categorical and are made numeric by the binary variable coding
described earlier.

ANCOVA is the analysis of covariance, which can be viewed as regression with both continuous and cate-
gorical predictors, or as a way of doing ANOVA (i.e. comparing treatment means), accounting for continuous
covariates; this is a way of blocking with continuous covariates.

Logistic regression refers to the modelling of the probability distribution of a binary response variable,
and the modern view of statistics sees logistic regression as encompassing contingency table analysis. In
other words, contingency table analysis can be accomplished by performing logistic regression with categorical
covariates.

Exercises
1. Construct the histogram plot of the data in the rivers data set. Describe the shape of the distribution.

2. Construct the histogram of the rivers data on the log scale. Describe the shape now.

3. Why do you think a bar chart is more appropriate than a pie chart for visualizing categorical data?1

4. The default colour scheme for most plots in R is gray-scale and not colour. What are the reasons for
avoiding colour when visualizing data?2

5. The HairEyeColor data set in R contains sample information on hair and eye colour for males and
females. If you type HairEyeColor, you will see two contingency tables of hair colour versus eye
colour for the two sexes. You can access the blond female eye colour information directly, by typing

HairEyeColor[ ,4, 2]

Construct a bar chart for the eye colour of blond females by typing

barplot(HairEyeColor[ ,4, 2])

What happens when you omit the ‘2’?

6. Type help(InsectSprays) to find information on this data set. Then construct a histogram of the
counts of insects in the various experimental plots by using

hist(InsectSprays$count)

Note the shape of the distribution and re-draw the histogram using the sqrt function, that is, by applying
a square root transformation to the counts beforehand. How does the distribution shape change.

7. Re-do the previous exercise with box plots. Then try

1Discerning differences in areas and angles is more difficult than discerning differences in heights.
2Reproducing plots on hard copy often uses gray-scale, and more importantly, a surprisingly large proportion of the human population

is colour-blind.
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boxplot(count ˜ spray, data = InsectSprays)

and repeat using the square root transformation of the counts. What is the effect of the square root
transformation here?3

8. In the previous question, what type of data analysis is recommended?4

9. Type help(airquality) to find information on the airquality data set. Then construct a his-
togram of airquality$Ozone. Repeat using a log-transformation. Which is closer to normality?

10. If you were to model Ozone level as it relates to Wind, what analysis technique is recommended?5 What
if you take temperature into account?6 What if you add in the Month variable?7

3The variability in the different distributions is better approximated by a constant after applying the square root transformation.
4ANOVA
5Simple regression.
6Multiple regression.
7There are choices here, but ANCOVA is a simple option.



3
T-tests

The goal of these tests, and the related confidence intervals, is to provide information about the mean of a single
population, or about the difference in means of two population. The critical assumption underlying the t-test is
that the measurements are independent of each other. In other words, if you know the value of one or more of
the observations, you cannot predict another observation or group of observations with improved certainty.

We will use simulation to demonstrate the techniques.

3.1 One sample
We suppose that we have a random sample of measurements from a population with unknown mean µ and
variance σ2. Without telling you, I will simulate such 8 such measurements, storing them in an object called X,
and we will use a test to determine if the true mean is 0 or not:

## [1] 0.89216 2.57622 0.92357 2.59863 2.90734 1.53666 3.42392 0.24498

We can calculate the mean and standard deviation for this sample using the mean() and sd functions:

mean(X)

## [1] 1.8879

sd(X)

## [1] 1.1415

Clearly, the sample mean is not 0, but the true mean could still be 0, and this result could just be the result
of random sampling error. The t-test helps us answer this question:

t.test(X, conf.level = .995)

##
## One Sample t-test
##
## data: X
## t = 4.68, df = 7, p-value = 0.0023
## alternative hypothesis: true mean is not equal to 0
## 99.5 percent confidence interval:
## 0.26174 3.51413
## sample estimates:
## mean of x
## 1.8879

The small p-value indicates strong evidence against the hypothesis that the true mean is 0. In fact, this
assertion is correct, since the code used to generate the random sample is as follows:

15
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X <- rnorm(8, mean = 1.5) # true mean is 1.5

Note that we have used a 99.5% confidence interval to estimate the mean. This differs from the usual 95%
that you might have been told to use. If you are conducting multiple tests, you should use caution, and a higher
confidence level is a first step, but see the next section for more information.

3.1.1 ASA Statement on p-values
The American Statistical Association (ASA) is taking steps to halt the widespread abuse of p-values in science.
In 2016, the ASA released a statement which provides important guidance. Information can be obtained in the
article by R. Wasserstein at
https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

Central to Wasserstein’s document is the following information:

The statement’s six principles, many of which address misconceptions and misuse of the p-value,
are the following:

1. P-values can indicate how incompatible the data are with a specified statistical model.

2. P-values do not measure the probability that the studied hypothesis is true, or the probability
that the data were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based only on whether
a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the importance
of a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hy-
pothesis.

3.1.2 An example with a skewed population
This time, we simulate a sample of 30 independent observations from an exponential population (i.e. non-
normal) with mean 1:

Y <- rexp(30)

Even though this data set comes from a non-normal population, let’s see what happens when we apply the
t-test of the hypothesis that the mean is 0.

t.test(Y)

##
## One Sample t-test
##
## data: Y
## t = 5.05, df = 29, p-value = 2.2e-05
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.69033 1.63019
## sample estimates:
## mean of x
## 1.1603
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The p-value is very small, leading us to conclude that the true mean is not 0 (and it isn’t).
If we were to test the hypothesis that the true mean is 1 (the truth), we would do the following:

t.test(Y, mu = 1)

##
## One Sample t-test
##
## data: Y
## t = 0.697, df = 29, p-value = 0.49
## alternative hypothesis: true mean is not equal to 1
## 95 percent confidence interval:
## 0.69033 1.63019
## sample estimates:
## mean of x
## 1.1603

In this case, the p-value is very large, and the interpretation would be that we do not have enough evidence
to reject the null hypothesis.

This example shows that with enough data points, even a substantially skewed population is not a serious
enough violation of the assumptions behind the t-test to warrant using an alternative testing method.

3.1.3 A smaller skewed sample
This time, we simulate a sample of 5 independent observations from an exponential population (i.e. non-
normal) with mean 1:

Y <- rexp(5)

Let’s see what happens when we apply the t-test of the hypothesis that the mean is 0.

t.test(Y)

##
## One Sample t-test
##
## data: Y
## t = 2.6, df = 4, p-value = 0.06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.071014 2.209623
## sample estimates:
## mean of x
## 1.0693

The p-value is not very small, indicating that we don’t have enough evidence to reject the null hypothesis.
If we were to test the hypothesis that the true mean is 1 (the truth), we would do the following:

t.test(Y, mu = 1)

##
## One Sample t-test
##
## data: Y
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## t = 0.169, df = 4, p-value = 0.87
## alternative hypothesis: true mean is not equal to 1
## 95 percent confidence interval:
## -0.071014 2.209623
## sample estimates:
## mean of x
## 1.0693

In this case, the p-value is very large, and the interpretation would be that we do not have enough evidence
to reject the null hypothesis.

This example shows that with enough data points, even a substantially skewed population is not a serious
enough violation of the assumptions behind the t-test to warrant using an alternative testing method.

What if we have more data?

Returning to the test that the mean is 0, let’s suppose we have an additional data point:

Y <- c(Y, rexp(1))

Again, let’s see what happens when we apply the t-test of the hypothesis that the mean is 0.

t.test(Y)

##
## One Sample t-test
##
## data: Y
## t = 2.91, df = 5, p-value = 0.033
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.11632 1.87919
## sample estimates:
## mean of x
## 0.99776

The p-value is smaller, indicating that we have some evidence to reject the null hypothesis, but we might
want to obtain an even larger sample, in order to be more certain.

3.2 Two independent samples
If we have two random samples that are independent of each other, we can still use a t-test to compare the
means of the populations from which they were sampled.

Let’s start with X and Y which were simulated earlier. They come from different populations, and the first
has a true mean of 1.5 and the second, a true mean of 1. The t-test will be correct if it gives us a small p-value,
indicating strong evidence against the null hypothesis that the true means are the same:

t.test(X, Y)

##
## Welch Two Sample t-test
##
## data: X and Y
## t = 1.68, df = 12, p-value = 0.12
## alternative hypothesis: true difference in means is not equal to 0
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## 95 percent confidence interval:
## -0.26369 2.04405
## sample estimates:
## mean of x mean of y
## 1.88794 0.99776

We actually know, in this case, that the variances are equal, so we could use

t.test(X, Y, var.equal=TRUE)

##
## Two Sample t-test
##
## data: X and Y
## t = 1.61, df = 12, p-value = 0.13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3179 2.0983
## sample estimates:
## mean of x mean of y
## 1.88794 0.99776

Note that the results are not all that different. The conclusions are the same: we don’t have enough data to
reject the null hypothesis that the means are different. This is not surprising, since the sample sizes are pretty
small (8 and 6).

3.3 Two samples - matched pairs
If there is a one-to-one correspondence between measurements in one of the samples with measurements in
the other sample, then the appropriate way to compare the means is by taking the differences, and running a
one-sample test on the differences. This can be done with the paired option in the t.test() function.

Let’s suppose L is a set of left foot lengths (in cm) for a sample of 15 adult males, and R contains the
corresponding right foot lengths. We would be interested in any systematic difference in the lengths of the feet.
A simulation model for the case where there is no difference could be the following:

L <- rnorm(15, mean =28, sd = 1)
R <- L + rnorm(15, mean = 0, sd = .03)

Here we have assumed that the left feet are normally distributed with a mean of 28 cm and a standard
deviation of 1 cm. The right feet are not equal to the left feet, but on average there is no difference. The
standard deviation of the difference is small.

Let’s see what the t-test says:

t.test(L, R, paired=TRUE)

##
## Paired t-test
##
## data: L and R
## t = -0.417, df = 14, p-value = 0.68
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.016705 0.011262
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## sample estimates:
## mean of the differences
## -0.0027213

The p-value is large indicating that there is no evidence of a difference, in line with the truth.
Let’s now simulate from a population where the right feet tend to be slightly larger than the left feet, on

average:

L <- rnorm(15, mean =28, sd = 1)
R <- L + rnorm(15, mean = 0.02, sd = .03)

Does the t-test find the difference?

t.test(L, R, paired=TRUE)

##
## Paired t-test
##
## data: L and R
## t = -2.74, df = 14, p-value = 0.016
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0402706 -0.0049088
## sample estimates:
## mean of the differences
## -0.02259

The p-value is pretty small, indicating that we have fairly strong evidence that there is a difference between
the left and right lengths in this sample.

3.4 Classical nonparametric tests
These tests remain valid for data where the normality assumption clearly does not hold. They have noth-
ing to offer if the more important independence assumption fails. They can all be carried out using the
wilcox.test() function.

3.4.1 Sign test

The sign test can be used to test for various properties of a population, based on a given random sample.
If we suspected that the left and right feet lengths from the earlier section were non-normal, we could use

the sign test to determine whether there is evidence that the right feet are longer than the left feet, by checking
the sign of the difference between the right and left feet:

sign(R - L)

## [1] -1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1

There seem to be a lot of positives and not so many negatives, so we can compute a p-value for the test
against the null hypothesis that there is no difference between left and right foot length by counting the number
of positives:
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Npos <- sum(sign(R-L)>0)

and comparing with what we might see in a binomial distribution with p = .5, and n = 15 trials:

binom.test(Npos, 15)

##
## Exact binomial test
##
## data: Npos and 15
## number of successes = 13, number of trials = 15, p-value = 0.0074
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.59540 0.98342
## sample estimates:
## probability of success
## 0.86667

The p-value is very small, indicating that we have evidence against the null hypothesis. This is in agreement
with what we saw in the matched-pairs result.

3.4.2 Wilcoxon sign-rank test
The Wilcoxon sign-rank test can be carried out on the simulated foot length data as follows:

wilcox.test(L, R, paired = TRUE)

##
## Wilcoxon signed rank test
##
## data: L and R
## V = 17, p-value = 0.012
## alternative hypothesis: true location shift is not equal to 0

Again, we have a small p-value, indicating evidence against the null hypothesis that the feet are the same
length.

3.4.3 Mann-Whitney U test
Recall that X is normally distributed and Y is exponentially distributed. We can use the Mann-Whitney U test
to test for this kind of difference.

wilcox.test(X, Y)

##
## Wilcoxon rank sum test
##
## data: X and Y
## W = 35, p-value = 0.18
## alternative hypothesis: true location shift is not equal to 0

The p-value is large, so the test failed to find the difference.
Let’s try another example, this time with different means:
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X <- rnorm(10) # mean is 0
Y <- rexp(5) # mean is 1

The samples are fairly small, but the test result below confirms that there is a difference between the two
populations:

wilcox.test(X,Y)

##
## Wilcoxon rank sum test
##
## data: X and Y
## W = 7, p-value = 0.028
## alternative hypothesis: true location shift is not equal to 0



4
Simple Regression

The yield (y, in kg/plot) was measured for various salinity concentrations (x, measured in units of electrical
conductivity). 18 measurements were recorded in a file called tomato.txt whose contents appear below:

1.60 59.50
1.60 53.30
1.60 56.80
1.60 63.10
1.60 58.70
3.80 55.20
3.80 59.10
3.80 52.80
3.80 54.50
6.00 51.70
6.00 48.80
6.00 53.90
6.00 49.00

10.20 44.60
10.20 48.50
10.20 41.00
10.20 47.30
10.20 46.10

The first column contains the salinity concentration levels, and the second column contains the yield mea-
surements.

We read these data into R using the read.table() function (or using a menu option in RStudio):

tom <- read.table("tomato.txt", header=FALSE)

Since there is no header, we should apply some sensible names to the data frame:

names(tom) <- c("salinity", "yield")

We next construct a scatterplot of the data to look for patterns and outliers as in Figure 4.1.

plot(yield ˜ salinity, data = tom)

We have plotted yield against salinity since we take it that the response variable is yield and the
explanatory variable or predictor variable is salinity. We base this on the fact that the yield was measured at
various salinity concentrations that appear to have been set by the experimenter.

23
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Figure 4.1: Scatterplot of tomato electrical conductivity data.

The scatterplot gives an indication of a clear downward trend as salinity increases. The trend is also vaguely
linear. The suggestion in the graph is that yield could be predicted by salinity. We can investigate this with the
lm() function:

tom.lm <- lm(yield ˜ salinity, data = tom)

Note that the model formula used here, i.e. yield ˜ salinity, is identical to that used in the
plot() function. This is often the case: if you can figure out a good way of plotting the data, this often
suggests the form of analysis.

We can explore the output from the fitted model using the summary() function:

summary(tom.lm)

##
## Call:
## lm(formula = yield ˜ salinity, data = tom)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.956 -1.967 0.173 1.825 4.844
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60.67 1.28 47.37 < 2e-16
## salinity -1.51 0.20 -7.53 1.2e-06
##
## Residual standard error: 2.83 on 16 degrees of freedom
## Multiple R-squared: 0.78,Adjusted R-squared: 0.766
## F-statistic: 56.7 on 1 and 16 DF, p-value: 1.21e-06
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Figure 4.2: Scatterplot of tomato electrical conductivity data with overlaid fitted line.

From the output, we can see the estimates of the intercept and slope of the line. Note that the slope estimate,
−1.5088 is negative, corresponding to the negative relation between salinity and yield The intercept is 60.67.
In fact, we can overlay the scatterplot of the data with the fitted line using the abline() function and the
output from the lm() function:

abline(tom.lm)

The F -statistic and corresponding p-value (1.212e − 06, a very very small number) suggest strongly that
the slope is nonzero, so the trend in the data is real, provided certain assumptions are satisfied:

1. the relation between salinity and yield is (at least approximately) linear.

2. the measurements are independent of each other, meaning that knowledge of one measurement does not
give you information about any other measurement, beyond what you would be able to predict from the
line itself.

3. variability in the yield measurements is the same for all salinity levels.

The first and third assumptions are fairly easy to check, and Figure 4.2 helps to do this. A plot of residuals
(differences between what the line would predict and the yield measurements) is a clearer way of checking.

The second assumption is difficult to check. It is connected intimately to the manner in which the data
have been collected. We will see later that there are some kinds of dependence that can be assessed, but those
methods are not applicable here.

From the output, we also see the R2 and adjusted R2 values. Although these quantities are often quoted in
the scientific literature and used to justify or validate models, they are actually not very useful, and have little
to say about whether a model is valid or not. The proper interpretation of R2 is as the proportion of variation in
the response explained by the model. The coefficient of determination coincides with the square of the Pearson
correlation coefficient:
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cor(tom$salinity, tom$yield)

## [1] -0.88304

By itself, this value tells us that the two variables are negatively correlated, meaning that if one were to
plot one of the variables against the other, we would see points scattered about a line with negative slope. In
fact, we did just that in Figure 4.2, suggesting that there is limited, if any, information to be gleaned from
calculating a correlation coefficient, when the power of a regression analysis is at our disposal. If one really
wants to compute a Spearman rank correlation, appropriate for data where a linear trend is not in evidence, one
can use

cor(tom$salinity, tom$yield, method = "spearman")

## [1] -0.89396

This also is of limited additional use.

Exercises
1. Consider the data on the model car that was released from various points on a ramp and the dis-

tance traveled was measured. The data frame is called modelcars, and it consists of two columns,
distance.traveled and starting.point.

library(DAAG) # the package containing the model car data set
mcar.lm <- lm(distance.traveled ˜ starting.point, data = modelcars)
summary(mcar.lm)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.0833 1.0780 7.4988 2.0657e-05
## starting.point 2.0139 0.1312 15.3493 2.8019e-08

Identify the slope and intercept of the line relating distance traveled to starting point.1 Is there strong
evidence of a nonzero slope to this line?2 Is the slope positive or negative?3

2. Write down the two lines of R code which would produce the graph in Figure 4.3. 4

plot(distance.traveled ˜ starting.point,
data = modelcars)

abline(mcar.lm)

3. Analyze the airquality data to determine the relationship between ozone and wind, by finding the
slope and intercept of the linear model. Then plot the line on a scatterplot of the data.

4. Repeat the above analysis using a square root transformation on the Ozone variable. Is this a better way
of modelling the data?5

1intercept: 8.083; slope: 2.014
2Yes, the p-value is 2.802e− 08 which is extremely small.
3Positive.
4plot(distance.traveled starting.point, data = modelcars); abline(mcar.lm)
5Yes, the square root transformation reduces some of the nonlinearity which is apparent when working with raw Ozone data.
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Figure 4.3: Distance travelled by a model car launched from a ramp at various starting points.
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ANOVA

5.1 One Factor
The chickwts data frame contains measurements of the weights of chicks who have been randomly assigned
to groups, each of which has been given a different type of feed. It is of interest to know whether the different
feed types lead to systematic differences in weight. In other words, does mean weight depend on the type of
feed. We refer to feed type as a factor having different levels representing the particular kinds of feed, e.g.
linseed, horsebean, and so on.

Side-by-side boxplots, as displayed in Figure 5.1, are a useful way to visualize these data.

plot(weight ˜ feed, data = chickwts, cex.axis=.75) # feed must be a factor

From the graph, it seems that horsebean leads to lower weights than some of the other feed types. It is
hard to tell for sure if there is variability between treatments because of the variability within treatments, that
is noise due to unmeasured factors.

We can test whether there is a difference in the mean weights statistically with the analysis of variance
(ANOVA). A general purpose procedure is as follows:

chick.lm <- lm(weight ˜ feed, data = chickwts)
anova(chick.lm)

## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## feed 5 231129 46226 15.4 5.9e-10
## Residuals 65 195556 3009

The test statistic compares the variability in the averages with the variability in the noise through an F -
statistic. A p-value is computed which gives the strength of evidence against the null hypothesis, that is the
hypothesis that there is no difference in the means. A small p-value – and in this case, it is very small – indicates
strong evidence against the null hypothesis, in favour of the alternative that there is a difference.

5.2 Two or More Factors
Information on gas mileage for a number of cars is available in table.b3 of the MPV package. Although
not from a designed experiment, we will analyze this observational data as if it were. Our objective is to see if
mean gas mileage y depends on either or both of carburetor barrels (x6, viewed as a categorical variable) and
type of transmission x11.

library(MPV)
b3.lm <- lm(y ˜ factor(x6>1)*x11, data = table.b3)
anova(b3.lm)

28
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Figure 5.1: Box-plots of chick weight samples for different types of feed.

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(x6 > 1) 1 0 0 0.02 0.895
## x11 1 689 689 40.85 6.4e-07
## factor(x6 > 1):x11 1 76 76 4.50 0.043
## Residuals 28 472 17

A number of points need to be made. First, x6 is recorded in the data frame as if it is continuous (and it
could be treated as such), so in order to treat it as categorical, we use the factor() function. We have also
coded the variable to have more than 1 barrel or to have 1 barrel.

The second point is the use of the use of * which forces the model to include both of the factors as well
as interactions between the factors. Interaction effects can play an important role in modelling, since they
reflect situations where, for example, changing the level of one factor, might have different effects, depending
on the level of the other factor. In this case, increasing number of carburetor barrels might affect gas mileage
differently for automatic than for manual transmission. The output can help us determine if this is actually the
case.

In fact, the p-value for the interaction effect is just under 5%, so there is moderate evidence of an interacting
effect between these two variables. The effect of the number of carburetor barrels on gas mileage could be
different for manual and automatic transmissions. If this were part of an actual research study, it is critical that
this result would be reproduced in a designed experiment. Publishing a marginally significant result such as
we obtained here, based on a small sample coming from an observational study would be irresponsible and
reckless. Unfortunately, this analysis mirrors too closely for a lot of what passes as scientific research in the
published literature.
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5.3 Randomized Block Design
The penicillin data frame in the BHH2 package contains data coming from a randomized block design. There
appear to be two factors, one is the treatment, the other is called blend. The blend factor is not of direct
interest in the study, but has been included in order to reduce the noise in the data which would have otherwise
been due to unmeasured factors.

library(BHH2) # contains penicillin.data
data(penicillin.data) # loads data
m1<-lm(yield˜treat+blend, data=penicillin.data)
anova(m1)

## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## treat 3 70 23.3 1.24 0.339
## blend 4 264 66.0 3.50 0.041
## Residuals 12 226 18.8

Because of the way the experiment has been designed, through randomization of subjects to treatment and
blocking groups, there is no reason to expect an interaction effect. The p-value for treat provides the measure
of the strength of evidence against the hypothesis that the mean response does not depend on treatment.

Exercises
1. Consider the data in PlantGrowth and conduct an analysis of variance to determine if the mean dried

yield weight of the plants under study differs depending on whether the plants were grown under control
conditions or under either of two different treatment conditions.

Visualize the data with side-by-side boxplots.
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Multiple Regression

The data frame table.b4 in the MPV library contains the following columns:

y sale price of the house (in thousands of dollars)
x1 taxes (in thousands of dollars)
x2 number of baths
x3 lot size (in thousands of square feet)
x4 living space (in thousands of square feet)
x5 number of garage stalls
x6 number of rooms
x7 number of bedrooms
x8 age of the home (in years)
x9 number of fireplaces

There are 24 observations on these variables in the data frame. A natural question to ask is whether any or
all of the given variables or covariates could be used to predict the sale price of a house.

The multiple regression approach is to consider a linear model of the form

y = β0 +

9∑
j=1

βjxj + ε.

If the β coefficients were known, then we could predict house price y, to within the unknown noise value ε, for
a new house in the same area (and era) from which the data were sampled, provided the information on taxes,
number of baths, and so on. If, for example, the ε term is modelled as a normal random variable with mean
0 and variance σ2, we could provide an interval which would contain the true price of the house with a given
probability.

The elements of ε are assumed to be uncorrelated random variables with mean 0 and common variance σ2.
The mean or expected value of y for the given values of the covariates is then

E[y] = β0 +

9∑
j=1

βjxj .

(The “E” notation stands for “Expected Value”.)

6.1 Fitting the model

The lm() function will take care of the coefficient estimation, variance estimation, t and F and p-value
calculations in one function call. For example, if we want to relate house price, y to x1, x3 and x6, use
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house.lm <- lm(y ˜ x1 + x3 + x6, data=table.b4)

We can view the output from this, using the summary function as in

summary(house.lm)

or to see the coefficient estimates and their statistical properties only, use

summary(house.lm)$coefficients

If we include all of the covariates, we can use the dot notation in the model formula:

house.lm <- lm(y ˜ ., data=table.b4)

summary(house.lm)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.927648 5.91285 2.52461 0.024283
## x1 1.924722 1.02990 1.86884 0.082711
## x2 7.000534 4.30037 1.62789 0.125836
## x3 0.149178 0.49039 0.30420 0.765447
## x4 2.722808 4.35955 0.62456 0.542304
## x5 2.006684 1.37351 1.46099 0.166096
## x6 -0.410124 2.37854 -0.17243 0.865570
## x7 -1.403235 3.39554 -0.41326 0.685678
## x8 -0.037149 0.06672 -0.55679 0.586461
## x9 1.559447 1.93750 0.80488 0.434347

The output above lists a number of things. Our focus is principally on the Estimate column, since that
gives us the estimates of the coefficients β. The intercept is 14.93 and the coefficient of x1 is 1.92, and so on.

Together with these estimates are estimates of the standard errors. These provide an assessment of the
amount of uncertainty is associated with the corresponding coefficient estimate. Clearly, the estimate of β6
has a relatively large degree of uncertainty associated with it, since the standard error is much larger than the
absolute value of the estimate itself.

This highlights an important problem when applying multiple regression techniques: over-fitting. When
using a limited amount of data to estimate a large number of parameters in this case, 10, the degree of uncer-
tainty in the estimates rises quickly. It is often better to carefully decide which covariates to include in a model
based on other considerations. Use any known science or other information to help make these choices. For
example, it might be known that taxes and living space are highly predictive of sale price. In that case, focus
on those variables immediately in order to more precisely estimate their coefficients.

house.lm <- lm(y ˜ x1 + x4, data=table.b4)
summary(house.lm)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.5447 3.17474 3.63643 1.5444e-03
## x1 2.9195 0.57599 5.06869 5.0972e-05
## x4 3.1574 3.29833 0.95729 3.4931e-01

Notice how the standard error estimates for the coefficients of x1 and x4 are less than before, although
the standard error for the living space variable still exceeds the absolute value of the coefficient, so there is
considerable uncertainty left there.
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6.2 Estimating and predicting
The model can now be used to estimate the expected house price for houses with x1 taxes and x4 amount of
living space using the formula

ŷ = 11.5 + 2.92x1 + 3.15x4.

This can be accomplished in R using the predict() function. For instance, suppose we want to estimate the
mean sale price for homes with $2000 taxes and 3000 square feet of living area. Use

predict(house.lm, newdata = data.frame(x1 = 2, x4 = 3))

## 1
## 26.856

The mean price for such a home is $25856. This estimate highlights an important point: this data set is old
and it applies to a particular location. In order to understand the housing market in a particular location and
time, it is necessary to use the relevant data.

Note also that the predict() function has been used. It can be used both for estimating the mean price of
a house or predicting the price of a specific house. Prediction uncertainty is usually much larger than estimation
uncertainty; both are incorporated in the predict() function. Use interval = "confidence" for
estimation and interval = "predict" for prediction. For example,

predict(house.lm, newdata = data.frame(x1 = 2, x4 = 3), interval = "predict")

## fit lwr upr
## 1 26.856 10.233 43.479

This says that with 95% probability, the house we are looking at with taxes of $2000 and 3000 square feet
of living area is priced between $10232 and $43479.

predict(house.lm, newdata = data.frame(x1 = 2, x4 = 3), interval = "confidence")

## fit lwr upr
## 1 26.856 11.42 42.292

This says that with 95% confidence, we can say that the mean price of houses with taxes of $2000 and 3000
square feet of living area is between $11420 and $42292.

6.3 Assessing the model
In the past, the term model validation was used when describing the process of deciding whether a model was
appropriate or not. This incorrectly conveys the sense that there is a correct model; it is now recognized that all
models are incorrect at some level, but some are more useful for certain purposes than others might be. Thus,
the term model assessment is now favoured, since it conveys a sense of checking the appropriateness of a given
model as opposed to checking its validity.

Although there are a number of statistics that are often (ab)-used to do this assessment, a graphical approach
is usually the best way to understand whether there are substantive problems with a given model. In particular,
graphs of residuals are the best way to decide if a model is failing severely. A residual is the difference between
the observed response value and the value predicted by the model. As such, residuals are effectively predictors
of the noise term ε in the model.

Since the noise term is assumed to have mean 0, constant variance and to have no internal correlations,
we can often simply look at a graph of the residuals plotted against observation number, fitted value, or a
predictor variable to look for patterns. Clear patterns are a sign of severe model failure. Figure 6.1 displays
the residuals plotted against the fitted values, with a smooth fitted overlaid red curve which can guide the eye
to any systematic patterns. In this case, the curve is not substantially different from a flat line, which would be
ideal. There does not seem to be a clear pattern in the residuals in this case.
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Figure 6.1: Plot of residuals for house price model against fitted values.

plot(house.lm, which = 1)

Another important plot, such as in Figure 6.2, concerns the influence of individual data points on the model
fit. Large values of Cook’s distance are suggestive of difficulties which should be remedied. For assistance with
such problems, it is probably best to consult your local statisticians for help. The values seen in the current
case are not worrisome.

plot(house.lm, which = 4)

6.4 Significance of regression
The F -test for significance of regression gives us a way of deciding whether any of the regression coefficients
should be nonzero. In other words, the coefficients (apart from the intercept) are assumed to be 0’s under
the null hypothesis and there must be at least one nonzero coefficient if the alternative hypothesis is true. An
F distribution is used to conduct the test. The p-value based on the test gives us the strength of evidence
supporting the case that at least one regression coefficient is nonzero, where, as usual, small values indicate
more evidence than large values would.

We can test whether the coefficients of x1 and x4 are both 0 in a variety of ways, including by looking
at all output from summary(house.lm). In order to see more clearly what is happening, you can use the
anova() function to decide between the null model (one with only an intercept) and the model we have
already fit:

house0.lm <- lm(y ˜ 1, data = table.b4) # intercept only model
anova(house.lm, house0.lm) # test significance of regression

## Analysis of Variance Table
##
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Figure 6.2: Influence diagnostic plot for house price models.

## Model 1: y ˜ x1 + x4
## Model 2: y ˜ 1
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 21 185
## 2 23 829 -2 -644 36.6 1.4e-07

The p-value is small indicating that at least one of the coefficients is nonzero. The nice thing about this
approach is that we can use it to decide if more variables should be added to the model. For example, let’s see
if there are any other variables to add, after adding x1 and x2:

houseAll.lm <- lm(y ˜ ., data = table.b4) # fit with all variables
anova(houseAll.lm, house.lm) # compare All- and two-variable models

## Analysis of Variance Table
##
## Model 1: y ˜ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
## Model 2: y ˜ x1 + x4
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 14 122
## 2 21 185 -7 -63.1 1.04 0.45

This analysis tells us that once we have taken taxes and living area into account, there is no point in adding
additional variables into the model. There is no evidence to suggest that the additional coefficients are nonzero.

Exercises

1. Consider the gas mileage data in table.b3 of the MPV package.
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(a) Fit a multiple regression model to estimate mean gas mileage y for cars with x7 number of trans-
mission speeds and having weight x10.

(b) Assess the model using the residual plot.

(c) Use the model to estimate mean gas mileage for cars having weight 5000 pounds and 4 transmission
speeds. Use a 95% confidence interval.

(d) Use the F -test for signifiance of regression to decide if any of the coefficients for your fitted model
are nonzero.

(e) Use another F -test to decide if variables x1, x2, x4 or x5 should be added into the model you have
already developed.



7
ANCOVA

The analysis of covariance (ANCOVA) allows us to model continuous responses as linear functions of continu-
ous and categorical covariates. In this way, it can be viewed as a relatively straightforward extension of multiple
regression. It can also be viewed as an extension of ANOVA whereby there is a blocking factor which is con-
tinuously measured. For a categorical covariate with two levels, there would be two lines in the regression:
parallel if there is no interaction effect; two different slopes if there is an interaction effect.

The ToothGrowth data frame in R concerns the length of odontoblasts, cells connected with the growth
of teeth, in a sample of 60 guinea pigs. One of three dose levels of vitamin C were supplied to the guinea pigs
in one of two forms: supp = VC refers to ascorbic acid and supp = OJ refers to orange juice. Figure 7.1
displays the data.

library(lattice)
xyplot(len ˜ sqrt(dose)|supp, data = ToothGrowth)

The figure shows that there are possibly two different lines relating length to vitamin C dose; it is possible
that there is a treatment effect.

We use lm() to check this, first by allowing for two intercepts and two slopes:

TG.lm <- lm(len ˜ sqrt(dose)*supp, data = ToothGrowth)
summary(TG.lm)

##
## Call:
## lm(formula = len ˜ sqrt(dose) * supp, data = ToothGrowth)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.987 -2.677 -0.172 2.738 7.413
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.48 2.63 0.94 0.350
## sqrt(dose) 17.48 2.43 7.18 1.7e-09
## suppVC -12.02 3.72 -3.24 0.002
## sqrt(dose):suppVC 8.00 3.44 2.33 0.024
##
## Residual standard error: 3.87 on 56 degrees of freedom
## Multiple R-squared: 0.758,Adjusted R-squared: 0.745
## F-statistic: 58.3 on 3 and 56 DF, p-value: <2e-16

Looking at the interaction between the square root of dose and supp, we see a fairly small p-value which is
highly suggestive of different slopes. There is no reason to consider the model without different slopes (which

37
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Figure 7.1: Tooth growth data: length of tooth versus square root of vitamin C dose, for each of the two
treatment methods.

would have been obtained by replacing the * with +). The value 8 indicates that for VC, the slope is 8 units
higher than for OJ: 17.48 + 8 = 25.48. The intercept for VC is 12.02 units lower: 2.478− 12.024 = −9.546.

We can graphically summarize the data with a simple scatterplot with the lines overlaid:

plot(len ˜ sqrt(dose), pch = as.numeric(supp), data = ToothGrowth)
abline(2.478, 17.479) # OJ line
abline(2.478-12.024, 17.479 + 8, lty=2) # VC line, dashed

Exercises
1. Fit the model with two parallel lines to the tooth growth data. What are the intercepts for the VC and OJ

lines? What is the slope? Plot the data with the two lines overlaid.

2. Consider the data in airquality which relate to Ozone levels in New York. Construct a model which
relates Ozone level to temperature and wind, taking Month into account, as a factor. Is there evidence
that Month should be included in the model? Is there an interaction between Month and wind? between
Month and temperature?
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8
Logistic Regression

8.1 Modelling binary responses
The data in p13.1 in the MPV package describes successes and failures of surface-to-air missiles as they
relate to target speed. The data are plotted in Figure 8.1, with successes on the vertical axis being represented
by a ‘1’ and failures being represented by a ‘0’.

Such binary data are not nearly normally distributed, so it the efficacy of least-squares becomes very ques-
tionable here. In this section, we indicate what could and should not be done with least-squares for such data.

library(MPV)
plot(p13.1, xlab = "target speed", ylab = "success/failure")

The first observation to make is that fitting a straight line to such data makes no sense, since the plotted
points do not at all scatter about such a line. Furthermore, if such a line were to be fit to the data, it would
necessarily take values outside the interval [0, 1] on subsets of the domain; interpretation of such values would
be difficult. In fact, the preferred interpretation of output arising from the fitting of models to such data is that
of probability. That is, useful models can provide answers to questions such as, “What is the probability of
success at a given target speed?” Since probabilities must lie within the interval [0, 1], we must consider models
based on nonlinear functions.

There are many functions which have values in [0, 1]. For example, the absolute value of the sine function is
a candidate. Such a function might be appropriate if there were oscillatory or periodic behaviour to be modelled,
but often, the desired model behaviour is monotonic (either increasing or decreasing). For the current example,
we might reasonably believe that the probability of success decreases as target speed increases.

Perhaps the most popular function for this purpose is the logistic function

p(x) =
ex

ex + 1
.

The function is sketched in Figure 8.2.

curve(exp(x)/(1 + exp(x)), from = -3, to = 3, ylab="p(x)")

A bit of algebra allows us to express x in terms of p, yielding the logit function:

`(p) = log

(
p

1− p

)
.

While p is restricted to take values between 0 and 1, the logit function can take any possible value, so relating
the logit function to a straight line or other linear combination is a possibility. For example,

`(p(x)) = β0 + β1x

which means that we can express the probability of an event in terms of a covariate x, using a linear function,
but the probability is related to the linear function through the logit. This kind of model where a linear function

40
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Figure 8.1: Surface-to-air missile successes (1) and failures (0) as they relate to target speed (in knots).
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Figure 8.2: The logistic function.
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of the covariate(s) is related to a function of the expected response is called a generalized linear model. The
logit is an example of a link function, since it links the expected response, in this case the probability p(x) to the
linear function of the covariate(s). Other link functions that are popular are the probit, and the complementary
log-log. The probit is the inverse of the normal probability distribution function. All of these alternatives are
available for use in the glm() function through the binomial() family function.

To fit the logistic regression model to the missile success data, try

p13.glm <- glm(y ˜ x, data = p13.1, family = binomial)
summary(p13.glm)

##
## Call:
## glm(formula = y ˜ x, family = binomial, data = p13.1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.062 -0.487 0.392 0.548 2.168
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.07088 2.10900 2.88 0.0040
## x -0.01770 0.00608 -2.91 0.0036
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 34.617 on 24 degrees of freedom
## Residual deviance: 20.364 on 23 degrees of freedom
## AIC: 24.36
##
## Number of Fisher Scoring iterations: 4

Note that we did not specify the link function; the default choice with the binomial family is the logit.
The Coefficient part of the output tells us that the logit of the probability of success as a linear function

of target speed has intercept 6.07 and slope -.0177. Standard error estimates for these parameter estimates are
supplied and indicate, in particular, that the slope is clearly negative.

The line itself is not as interesting as the estimated logistic curve which is plotted in Figure 8.3 together with
the original data. The curve can now be used to read off specific probabilities of success at the various speeds.
Note that in order to obtain the curve, we have used the predict() function with type = "response";
without specifying type, the default is to use the predictions on the linear scale.

plot(p13.1, xlab = "target speed", ylab = "success/failure")
newspeeds <- 200:500 # speeds at which we can predict using the fitted model
lines(newspeeds, predict(p13.glm, newdata=data.frame(x = newspeeds),

type = "response"))

Other features of the glm() output should be discussed. The dispersion parameter has been taken to be
1. We are assuming that there is no clustering in the data which would have possibly led to overdispersion:
the case where the variance exceeds what would be expected under a binomial model. If there is a belief that
clustering is occurring (not likely in this example), the quasibinomial family should be used instead.

The null deviance refers to a quantity that is calculated for a model that does not include the covariate,
in this case speed. You can view it and the residual deviance as a generalization of the notion of sum of
squares. The residual deviance is calculated for the model which includes the covariate and is considerably
smaller than the null deviance, suggesting that the covariate is making a difference to the model fitting. This
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Figure 8.3: Surface-to-air missile successes (1) and failures (0) as they relate to target speed (in knots) with
overlaid logistic curve.

agrees with the small p-value, but the comparison with the degrees of freedom, 23, is additionally useful. Under
the assumption that the model is correct, the expected value of the residual deviance should be the number of
degrees of freedom. Here it is a bit below the degrees of freedom, but not too far off. This is suggestive of a
well-fitting model.

8.2 Presence-Absence Data
The frogs data in the DAAG library contains data on the presence or absence of Southern Corroboree frogs at
a number of locations in the Snowy Mountains. Presence is coded as 1 and absence is coded as 0. A number of
other covariates are recorded, including distance to nearest extant population, NoOfPools - the number
of potential breeding pools, meanmin - the mean minimum Spring temperature, and meanmax - the mean
maximum Spring temperature. Other variables are also listed, but we will focus on these in order to model the
probability of detecting the presence of a frog at a given location:

library(DAAG) # package containing the frogs data set
frogs.glm <- glm(pres.abs ˜ log(distance) +

log(NoOfPools) + meanmin + meanmax, family = binomial, data = frogs)

summary(frogs.glm)

##
## Call:
## glm(formula = pres.abs ˜ log(distance) + log(NoOfPools) + meanmin +
## meanmax, family = binomial, data = frogs)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.975 -0.722 -0.278 0.797 2.574
##
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## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 18.527 5.267 3.52 0.00044
## log(distance) -0.755 0.226 -3.34 0.00084
## log(NoOfPools) 0.571 0.215 2.65 0.00800
## meanmin 5.379 1.193 4.51 6.5e-06
## meanmax -2.382 0.623 -3.82 0.00013
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 279.99 on 211 degrees of freedom
## Residual deviance: 197.66 on 207 degrees of freedom
## AIC: 207.7
##
## Number of Fisher Scoring iterations: 5

The fitted model is

̂logit(p) = 18.5− .755 log(d) + 0.57 log(N) + 5.38min− 2.38max

where d is distance, N is number of pools and min and max refer to the mean minimum and mean maximum
temperature variables.

The residual deviance is 197.7 on 207 degrees of freedom which is a reasonable value. Thus, the model
appears to be an adequate summary of the data.

8.3 Contingency Tables

Binary responses are actually coded categorical variables with 2 levels, and when the covariates are also cat-
egorical variables, one can use contingency table analysis. In fact, contingency tables can handle categorical
responses with more than 2 levels.

The basic idea of contingency table analysis is to compare the observed counts in the cells of a table with
what might be expected if the response and covariates were independent.

An example of a table is counts of individual males by eye color and hair color:

HairEyeColor[,,1]

## Eye
## Hair Brown Blue Hazel Green
## Black 32 11 10 3
## Brown 53 50 25 15
## Red 10 10 7 7
## Blond 3 30 5 8

For example, 32 males in the sample had Brown eyes and Black hair. We can use R to compute the expected
counts under the assumption eye color and hair color are not associated:

HE.chisq <- chisq.test(HairEyeColor[,,1])

## Warning in chisq.test(HairEyeColor[, , 1]): Chi-squared approximation may
be incorrect

HE.chisq$expected
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## Eye
## Hair Brown Blue Hazel Green
## Black 19.670 20.272 9.4337 6.6237
## Brown 50.229 51.767 24.0896 16.9140
## Red 11.943 12.308 5.7276 4.0215
## Blond 16.158 16.652 7.7491 5.4409

Thus, under the assumption of independence, instead of 32 Brown-eyed Black-haired males in a sample of
this size, we would expect 19.67 and so on. The discrepancy between 32 and 19.67 and all other discrepancies
are aggregated into a statistic which is compared with a chisquare distribution in order to obtain a p-value which
quantifies the evidence against the hypothesis of no-association.

For this problem, there is a warning suggesting that some of the cells are too small and that the test may not
be accurate, so a simulation method can be employed to make the test result more accurate:

HE.chisq <- chisq.test(HairEyeColor[,,1], simulate.p.value = TRUE)
HE.chisq

##
## Pearson's Chi-squared test with simulated p-value (based on 2000
## replicates)
##
## data: HairEyeColor[, , 1]
## X-squared = 41.3, df = NA, p-value = 5e-04

The p-value is very small indicating that there is evidence of an association between hair and eye color for
males.

Exercises
1. Estimate the logit of the probability of missile success at a speed of 400 knots. Calculate the probability

of missile success. (For this, you can either use the logistic formula, or the predict() function in R,
using the correct type.)

2. The p13.2 data frame in the MPV package has 20 observations on home ownership as it relates to
family income. Fit a logistic regression model to the data and use the output to

(a) identify the logit of the probability of home ownership as a linear function of family income.

(b) determine if the logistic model is reasonable.

(c) estimate the probability that a family with an income of $40000 owns their home.

3. The data in HairEyeColor[,,2] concern hair and eye color for a sample of females. Conduct a test
to see if hair and eye color are associated.
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