
First Steps to R

W. John Braun, UBC

Workshop - Calgary

December 4, 2019

1

An Overview of R

1

These lectures introduce R, as originally developed as S,
by John Chambers and others at Bell Laboratories in 1976,
and implemented and made into an Open Source program
by Robert Gentleman and Ross Ihaka in 1995.

As you learn R, there is nothing wrong with making errors when learning
a programming language like R.

You learn from your mistakes, and there is no harm done.

Try out the code embedded into the accompanying text and experiment
with new variations to discover how the system will respond.

1 https://www.r-project.org/Licenses/GPL-2

2

Downloading and installing R and RStudio

R can be downloaded for free from CRAN*.

A binary version is usually simplest to use and can be installed in
Windows and Mac fairly easily.

A binary version is available for Windows from the web page
http://cloud.r-project.org/bin/windows/base.

The “setup program”setup is usually a file with a name like
R-3.6.1-win.exe.

Clicking on this file will start an almost automatic installation of the R
system. Clicking “Next” several times is often all that is necessary in
order to complete the installation.

*http://cloud.r-project.org

3

Downloading and installing R and RStudio

An R icon
()

will appear on your computer’s desktop upon
completion.

RStudio is also very popular. You can download the “Open Source
Edition” of “RStudio Desktop” from http://www.rstudio.com/, and
follow the instructions to install it on your computer.

Although much or all of what is described here can be carried out in
RStudio, there will be little further comment about that environment.

Thus, you might find that some of the instructions to be carried out at
the command line can also be carried out with the menu system in
RStudio.

4

Executing commands in R

Clicking on the R icon, or opening RStudio similarly, should provide you
with access to a window or pane, called the R console in which you can
execute commands.

The > sign is the R
prompt which indicates
where you can type in
the command to be ex-
ecuted.

5

Executing commands in R

You can do arithmetic of any type, including multiplication:

By hitting the “Enter”
key, you are asking R to
execute this
calculation.

6

Executing commands in R

The answer appears on the next line:

Often, you will type in commands such as this into a script window, as in
RStudio, for later execution, through hitting “ctrl-R” or another related
keystroke sequence.

7

Executing commands in R

Objects that are built in to R or saved in your workspace, i.e. the
environment in which you are currently doing your calculations, can be
displayed, simply by invoking their name.

For example,

the data set or data frame
called women contains
information on heights
and weights of American
women:

> women

height weight
1 58 115
2 59 117
3 60 120
4 61 123
5 62 126
6 63 129
7 64 132
8 65 135
9 66 139
10 67 142
11 68 146
12 69 150
13 70 154
14 71 159
15 72 164

8

Packages

One of the major strengths of R is the availability of add-on packages
that have been created by statisticians and computer scientists from
around the world.

There are thousands of packages, e.g. graphics, ggplot2, and MPV.

A package contains functions and data which extend the abilities of R.

Every installation of R contains a number of packages by default (e.g.
base, stats, and graphics) which are automatically loaded when you
start R.

9

Packages

To load an additional package, for example, called DAAG, type

library(DAAG)

If you get a warning that the package is can’t be found, then the package
doesn’t exist on your computer, but it can likely be installed. Try

install.packages("DAAG")

10

Packages

In RStudio, it may be simpler to use the Tools menu.

11

Packages

Choose “Install Packages”:

12

Packages

Type in the name of the package you are requesting, and click “Install”:

13

Packages

Once DAAG is installed, it can be loaded using the library() function,
and you can access data frames and functions that were not avaiable
previously. For example, the seedrates data frame is now available:

seedrates

rate grain

1 50 21.2

2 75 19.9

3 100 19.2

4 125 18.4

5 150 17.9

14

Using one object from a package at a time

The MPV package is installed on my
system, but I have not loaded it. I
only want to access the p2.12 data
frame and nothing else.

To do this, just type the package
name (MPV), followed by two colons
(::) and the object name you seek.

MPV::p2.12

temp usage

1 21 185.79

2 24 214.47

3 32 288.03

4 47 424.84

5 50 454.68

6 59 539.03

7 68 621.55

8 74 675.06

9 62 562.03

10 50 452.93

11 41 369.95

12 30 273.98

15

Calculations in R

You can control the number of digits in the output with the options()

function.

This is useful when reporting final results such as means and standard
deviations, since including excessive numbers of digits can give a
misleading impression of the accuracy in your results.

Compare
583/31

[1] 18.80645
with

options(digits=3)

583/31

[1] 18.8

16

Calculations in R

Observe the patterns in the following calculations.

options(digits = 18)

1111111*1111111

[1] 1234567654321

11111111*11111111

[1] 123456787654321

111111111*111111111

[1] 12345678987654320

The error in the final calculation is
due to the way R stores information
about numbers.

There are around 17 digits of
numeric storage are avaiable.

17

Data frames

Most data sets are stored in R as data frames, such as the women object
we encountered earlier.

Data frames are like matrices, but where the columns have their own
names.

You can obtain information about a built-in data frame by using the
help() function. For example, observe the outcome to typing
help(women).

It is generally unwise to inspect data frames by printing their entire
contents to your computer screen, as it is far better to use graphical
procedures to display large amounts of data or to exploit numerical
summaries.

18

Data frames

The summary() function provides information about the main features of
a data frame:

summary(women)

height weight

Min. :58.0 Min. :115

1st Qu.:61.5 1st Qu.:124

Median :65.0 Median :135

Mean :65.0 Mean :137

3rd Qu.:68.5 3rd Qu.:148

Max. :72.0 Max. :164

19

Data frames

Columns can be of different types from each other. An example is the
built-in chickwts data frame:
summary(chickwts)

weight feed
Min. :108 casein :12
1st Qu.:204 horsebean:10
Median :258 linseed :12
Mean :261 meatmeal :11
3rd Qu.:324 soybean :14
Max. :423 sunflower:12

One column is of factor type while the other is numeric.

20

Data frames

If you want to see the first few rows of a data frame, you can use the
head() function:

head(chickwts)

weight feed

1 179 horsebean

2 160 horsebean

3 136 horsebean

4 227 horsebean

5 217 horsebean

6 168 horsebean

The tail() function displays the last few rows.

21

Data frames

The number of rows can be determined using the nrow() function:

nrow(chickwts)

[1] 71

Similarly, the ncol() function counts the number of columns.

22

Data frames

The str() function is another way to extract information about a data
frame:
str(chickwts)

'data.frame': 71 obs. of 2 variables:
$ weight: num 179 160 136 227 217 168 108 124 143 140 ...
$ feed : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...

23

Reading data into a data frame from an external file

If you have prepared the data set yourself, you could simply type it into a
text file, for example called mydata.txt, perhaps with a header
indicating column names, and where you use blank spaces to separate
the data entries.

The read.table() function will read in the data for you as follows:

mydata <- read.table("mydata.txt", header = TRUE)

The object mydata now contains the data read in from the external file.

24

Reading data into a data frame from an external file

You could use any name that you wish in place of mydata, as long as the
first element of its name is an alphabetic character.

If the data entries are separated by commas and there is no header row,
as in the file wx l3 2006.txt, you would type:

wx1 <- read.table("wx_l3_2006.txt", header=F, sep=",")

25

Reading data into a data frame from an external file

Often, your data will be in a spreadsheet.

If possible, export it as a .csv file and use something like the following
to read it in.

wx2 <- read.table("wx_l3_fwi_2006-2011.csv",

header=FALSE, sep=",")

If you cannot export to .csv, you can leave it as .xlsx and use the
read.xslx() command in the xlsx package (Dragulescu and Arendt, 2018).

26

Reading data into a data frame from an external file

When reading in a file with columns separated by blanks with blank
missing values, you can use code such as

dataset1 <- read.table("file1.txt", header=TRUE,

sep=" ", na.string=" ")

This tells R that the blank spaces should be read in as missing values.

27

Reading data into a data frame from an external file

Observe the contents of dataset1:

dataset1

x y z

1 3 4 NA

2 51 48 23

3 23 33 111

Note the appearance of NA.
This represents a missing value.
Functions such as is.na() are important
for detecting missing values in vectors and
data frames.

For more information about handling of missing values, check out the
See Also section of help(is.na) and the mice package (van Buuren
and Groothuis-Oudshoorn, 2011).

28

Reading data into a data frame from an external file

Sometimes, external software exports data files that are tab-separated.
When reading in a file with columns separated by tabs with blank
missing values, you could use code like

dataset2 <- read.table("file2.txt", header=TRUE,

sep="\t", na.string=" ")

Again, observe the result:

dataset2

x y z

1 33 223 NA

2 32 88 2

3 3 NA NA

If you need to skip the first 3 lines of a file to be read in, use the skip=3

argument.

29

Extracting information from data frames

To extract the height column from the women data frame, use the $

operator:

women$height

[1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

30

Extracting information from data frames

If you want only the chicks who were fed horsebean, you can apply the
subset() function to the chickwts data frame:

chickHorsebean <- subset(chickwts, feed == "horsebean")

chickHorsebean

weight feed

1 179 horsebean

2 160 horsebean

3 136 horsebean

4 227 horsebean

5 217 horsebean

6 168 horsebean

7 108 horsebean

8 124 horsebean

9 143 horsebean

10 140 horsebean

31

Extracting information from data frames

You can now calculate the mean and standard deviation, and so on, of
these weights:

mean(chickHorsebean$weight) # mean

[1] 160.2

sd(chickHorsebean$weight) # standard deviation

[1] 38.626

32

Extracting information from data frames

In order to extract the 4th row from the chickHorsebean data frame,
type

chickHorsebean[4,]

weight feed

4 227 horsebean

To extract the element in the 2nd column of the 7th row of women, type

women[7, 2]

[1] 132

33

Extracting information from data frames

If we want the elements in the 4th through 7th row of the 2nd column of
women, we can use

women[4:7, 2]

[1] 123 126 129 132

Note the use of the : operator:

4:7

[1] 4 5 6 7

34

Extracting information from data frames

Another built-in data frame is airquality.

If we want to compute the
mean for each of the first
4 columns of this data
frame, we can use the
sapply() function:

sapply(airquality[, 1:4], mean)

Ozone Solar.R Wind Temp

NA NA 9.9575 77.8824

The sapply() function applies the same function to all columns of the
supplied data frame.

35

Factors

Factors offer an alternative, often more efficient, way of storing
character data.

For example, a factor with 6 elements and having the two levels,
control and treatment can be created using:factor()

grp <- c("control", "treatment", "control", "treatment",

"treatment", "control")

grp

[1] "control" "treatment" "control" "treatment"

[5] "treatment" "control"

grp <- factor(grp)
grp

[1] control treatment control treatment treatment
[6] control
Levels: control treatment

36

Factors

Consider the built-in data frame InsectSprays

summary(InsectSprays)

count spray

Min. : 0.0 A:12

1st Qu.: 3.0 B:12

Median : 7.0 C:12

Mean : 9.5 D:12

3rd Qu.:14.2 E:12

Max. :26.0 F:12

The second column of this data frame is a factor representing the
different types of spray used in the associated experiment.

37

Factors

The levels of a factor can be
listed using the levels()
function:

levels(InsectSprays$spray)

[1] "A" "B" "C" "D" "E" "F"

38

Factors

Factors are a more efficient way of storing character data when there are
repeats among the vector elements.

This is because the levels of a factor are internally coded as integers.

To see what the codes are for the spray factor, we can type

as.integer(InsectSprays$spray)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

[24] 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4

[47] 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

[70] 6 6 6

The labels for the levels are only stored once each, rather than being
repeated.

39

Factors

We can change the labels for the factor using the levels() function as
follows:

levels(InsectSprays$spray)[3] <- "Raid"

Observe the effect of the change in

summary(InsectSprays$spray)

A B Raid D E F

12 12 12 12 12 12

40

Factors

The levels() function also offers a simple way to collapse categories.

Suppose we are interested in comparing the first three levels with the
last three levels.

We can create a new factor for this purpose as follows:

InsectSprays$newFactor <- InsectSprays$spray

levels(InsectSprays$newFactor) <- c("A", "A", "A",

"B", "B", "B")

41

Factors

Check the result:

summary(InsectSprays)

count spray newFactor

Min. : 0.0 A :12 A:36

1st Qu.: 3.0 B :12 B:36

Median : 7.0 Raid:12

Mean : 9.5 D :12

3rd Qu.:14.2 E :12

Max. :26.0 F :12

42

Tibbles

A tibble can be created from an existing data frame, using the
as_tibble() function, found in the tibble package (Wickham, 2017).

library(tibble) # install.packages("tibble"), if needed

trees.tbl <- as_tibble(trees) # trees is a data frame

43

Tibbles

Tibbles are like data frames, but they prevent you from doing silly
things, like printing a whole data set to the screen:

trees.tbl # trees.tbl is a tibble

A tibble: 31 x 3
Girth Height Volume
<dbl> <dbl> <dbl>
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7
7 11 66 15.6
8 11 75 18.2
9 11.1 80 22.6
10 11.2 75 19.9
... with 21 more rows

44

Getting a glimpse of a tibble

The glimpse function is similar to str but a little friendlier:

glimpse(trees.tbl)

Observations: 31

Variables: 3

$ Girth <dbl> 8.3, 8.6, 8.8, 10.5, 10.7, 10....

$ Height <dbl> 70, 65, 63, 72, 81, 83, 66, 75...

$ Volume <dbl> 10.3, 10.3, 10.2, 16.4, 18.8, ...

45

Tibbles are like data frames

Tibbles act like data frames in some ways. Functions such as summary()
and str() are still useful. For example,

str(trees.tbl)

Classes 'tbl_df', 'tbl' and 'data.frame': 31 obs. of 3 variables:

$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...

$ Height: num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...

46

The plot() function
plot(trees.tbl)

Girth

65 70 75 80 85

●●●

● ● ●● ● ●● ●●●● ●
● ● ●●● ● ●●

● ●
● ●●●●

●

8
12

16
20

●●
●

●●●● ● ●● ●●●●
●

● ●●●● ●● ●

● ●
●●

●●●

●

65
75

85

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●●●

●

Height
●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●●●

●

8 10 12 14 16 18 20

●●●

●
●●

●
●
●
●
●
●●●●

●

●

●●●

●
●

● ●
●

●●
●

●●

●

●●●

●
● ●

●
●

●
●

●
●●● ●

●

●

●●●

●
●

●●
●

● ●
●

●●

●

10 20 30 40 50 60 70

10
30

50
70

Volume

This is a scatterplot matrix.

The effect of plot(trees) would have been the same.
47

Tibbles are not like data frames

The girth of a tree is like its circumference, so we might expect the
volume of the tree to be related to the square of girth times height.

Specifically, we might predict volume from girth and height using the
following formula:

V =
G2H

4π

We can calculate this prediction from the given data and see how much
error there is.

To do this, we need functions in the tidyr and dplyr packages.

library(tidyr)

library(dplyr) # or just use library(tidyverse)

48

Tibbles are not like data frames
trees.tbl <- trees.tbl %>%

mutate(VolumePredicted = Girthˆ2*Height/(4*pi))

trees.tbl

A tibble: 31 x 4
Girth Height Volume VolumePredicted
<dbl> <dbl> <dbl> <dbl>
1 8.3 70 10.3 384.
2 8.6 65 10.3 383.
3 8.8 63 10.2 388.
4 10.5 72 16.4 632.
5 10.7 81 18.8 738.
6 10.8 83 19.7 770.
7 11 66 15.6 636.
8 11 75 18.2 722.
9 11.1 80 22.6 784.
10 11.2 75 19.9 749.
... with 21 more rows

49

Tibbles are not like data frames

Why are the predicted volumes off by so much?

To find the answer, read the help file to find that the Girth measurements
are actually diameter measurements in inches.

The other variables are in terms of feet.

Re-doing the calculation with diameter, instead of girth, we have

V =
π ∗D2H

4(12)2

We can calculate this prediction from the given data and see how much
error there is:

trees.tbl <- trees.tbl %>%

mutate(VolumePredicted = Girthˆ2*Height/(4*12ˆ2))

50

Tibbles are not like data frames

trees.tbl

A tibble: 31 x 4

Girth Height Volume VolumePredicted

<dbl> <dbl> <dbl> <dbl>

1 8.3 70 10.3 8.37

2 8.6 65 10.3 8.35

3 8.8 63 10.2 8.47

4 10.5 72 16.4 13.8

5 10.7 81 18.8 16.1

6 10.8 83 19.7 16.8

7 11 66 15.6 13.9

8 11 75 18.2 15.8

9 11.1 80 22.6 17.1

10 11.2 75 19.9 16.3

... with 21 more rows

51

Visualizing the errors in the volume predictions

The code below causes the errors or residuals to be plotted against the
predicted volumes as below.

trees.tbl <- trees.tbl %>%

mutate(error = Volume - VolumePredicted)

plot(error ˜ VolumePredicted, data = trees.tbl)

●●
●

● ●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40 50 60

0
2

4
6

8
10

12
14

VolumePredicted

er
ro

r

Note that we are still systemat-
ically under-predicting the vol-
ume and the prediction error is
increasing with diameter.

52

References

1. Ernesto Barrios (2016). BHH2: Useful Functions for Box, Hunter and Hunter II. R package version
2016.05.31. URL https://CRAN.R-project.org/package=BHH2.

2. W.J. Braun (2019). MPV: Data Sets from Montgomery, Peck and Vining. R package version 1.55.
URL https://CRAN.R-project.org/package=MPV.

3. W. John Braun and Duncan Murdoch (2016). A First Course in Statistical Programming with R
Second Edition. Cambridge University Press.

4. Adrian A. Dragulescu and Cole Arendt (2018). xlsx: Read, Write, Format Excel 2007 and Excel
97/2000/XP/2003 Files. R package version 0.6.1. URL
https://CRAN.R-project.org/package=xlsx.

5. John H. Maindonald and W. John Braun (2006). Data Analysis and Graphics. Third Edition.
Cambridge University Press.

6. John H. Maindonald and W. John Braun (2015). DAAG: Data Analysis and Graphics Data and
Functions. R package version 1.22. URL https://CRAN.R-project.org/package=DAAG.

7. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

8. R Core Team (1999-2018). An Introduction to R. Version 3.6.1 (2019-07-05).

9. Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN
978-0-387-75968-5

53

10. Stef van Buuren, Karin Groothuis-Oudshoorn (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. URL
https://www.jstatsoft.org/v45/i03/.

11. Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical
Software, 40(1), 1-29. URL http://www.jstatsoft.org/v40/i01/.

12. Hadley Wickham (2017). tidyverse: Easily Install and Load the ’Tidyverse’. R package version 1.2.1.
https://CRAN.R-project.org/package=tidyverse

13. Hadley Wickham, Peter Danenberg, Gábor Csárdi, Manuel Eugster (2019). roxygen2: In-Line
Documentation for R. R package version 7.0.1.
https://CRAN.R-project.org/package=roxygen2

