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Box plots

The rivers data set contains the lengths of 141 important or major
North American rivers. A quick numeric summary of these data is
obtained through

summary(rivers)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 135.0 310.0 425.0 591.2 680.0 3710.0
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Box plots

A box plot, as shown in the left panel below, can be constructed using

boxplot(rivers)
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Box plots

Taking logs and then computing the box plot gives the graph in the right
panel of the previous slide.

The result is much more symmetric; the histogram would be hard to
distinguish from a normal distribution.

boxplot(log(rivers))
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Eye Colour - Categorical Data

A sample of brown-haired males revealed the following eye colour
counts:

black brown blue green
53 50 25 15
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Eye Colour - Categorical Data

A bar chart for the eye-colour counts for brown-haired males is
constructed using
barplot(c("black" = 53, "brown" = 50, "blue" = 25, "green" = 15))
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T-tests

The goal of these tests, and the related confidence intervals, is to
provide information about the mean of a single population, or about the
difference in means of two population.

The critical assumption underlying the t-test is that the measurements
are independent of each other.

We will use simulation to demonstrate the techniques.
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One sample

We suppose that we have a random sample of measurements from a
population with unknown mean µ and variance σ2.

Without telling you how, I will simulate such 8 such measurements,
storing them in an object called X, and we will use a test to determine if
the true mean is 0 or not:

## [1] 0.23 2.11 1.16 0.77 1.87 2.68 1.87 0.69

We can calculate the mean and standard deviation for this sample using
the mean() and sd functions:

mean(X); sd(X)

## [1] 1.42189

## [1] 0.836634
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One sample test

Clearly, the sample mean is not 0, but the true mean could still be 0, and
this result could just be the result of random sampling error. The t-test
helps us answer this question:

t.test(X, conf.level = .995)

##

## One Sample t-test

##

## data: X

## t = 4.807, df = 7, p-value = 0.00195

## alternative hypothesis: true mean is not equal to 0

## 99.5 percent confidence interval:

## 0.2300334 2.6137473

## sample estimates:

## mean of x

## 1.42189
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One sample test

The small p-value indicates strong evidence against the hypothesis that
the true mean is 0. In fact, this assertion is correct, since the code used
to generate the random sample was as follows:

X <- rnorm(8, mean = 1.5) # true mean is 1.5

Note that we have used a 99.5% confidence interval to estimate the
mean. This differs from the usual 95% that you might have been told to
use.
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Two samples - matched pairs

If there is a one-to-one correspondence between measurements in one
of the samples with measurements in the other sample, then the
appropriate way to compare the means is by taking the differences, and
running a one-sample test on the differences.

This can be done with the paired option in the t.test() function.

Let’s suppose L is a set of left foot lengths (in cm) for a sample of 15
adult males, and R contains the corresponding right foot lengths.

We would be interested in any systematic difference in the lengths of the
feet.
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Two samples - matched pairs

A simulation model for the case where there is no difference could be
the following:

L <- rnorm(15, mean =28, sd = 1)

R <- L + rnorm(15, mean = 0, sd = .03)

Here we have assumed that the left feet are normally distributed with a
mean of 28 cm and a standard deviation of 1 cm.

The right feet lengths are not exactly equal to the left feet lengths, but on
average there is no difference.

The standard deviation of the difference is small.
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Two samples - matched pairs

Let’s see what the t-test says:
t.test(L, R, paired=TRUE)

##
## Paired t-test
##
## data: L and R
## t = 2.3404, df = 14, p-value = 0.03459
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.001415402 0.032459738
## sample estimates:
## mean of the differences
## 0.01693757

The p-value is large indicating that there is no evidence of a difference,
in line with the truth.

13



Simple Regression

The yield (y, in kg/plot) was measured for various salinity concentrations
(x, measured in units of electrical conductivity).

18 measurements were recorded in a file called tomato.txt whose
contents summarized below:

## salinity yield

## Min. : 1.600 Min. :41.00

## 1st Qu.: 2.150 1st Qu.:48.58

## Median : 4.900 Median :53.05

## Mean : 5.456 Mean :52.44

## 3rd Qu.: 9.150 3rd Qu.:56.40

## Max. :10.200 Max. :63.10

The first column contains the salinity concentration levels, and the
second column contains the yield measurements.
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Simple Regression

We read these data into R using the read.table() function (or using a
menu option in RStudio):

tom <- read.table("tomato.txt", header=FALSE)

Since there is no header, we should apply some sensible names to the
data frame:

names(tom) <- c("salinity", "yield")
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Simple Regression

We next construct a scatterplot of the data to look for patterns and
outliers.

plot(yield ˜ salinity, data = tom, pch=16)
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Simple Regression

The scatterplot gives an indication of a clear downward trend as salinity
increases.

The trend is also vaguely linear.

We can investigate this with the lm() function:

tom.lm <- lm(yield ˜ salinity, data = tom)
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Simple Regression

We can explore the output from the fitted model using the summary()
function:
summary(tom.lm)

##
## Call:
## lm(formula = yield ˜ salinity, data = tom)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9560 -1.9665 0.1729 1.8255 4.8440
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60.6700 1.2807 47.372 < 2e-16
## salinity -1.5088 0.2005 -7.527 1.21e-06
##
## Residual standard error: 2.828 on 16 degrees of freedom
## Multiple R-squared: 0.7798,Adjusted R-squared: 0.766
## F-statistic: 56.65 on 1 and 16 DF, p-value: 1.212e-06
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Simple Regression

We can overlay the scatterplot of the data with the fitted line using the
abline() function and the output from the lm() function:

abline(tom.lm)
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One factor ANOVA

The chickwts data frame contains measurements of the weights of
chicks who have been randomly assigned to groups, each of which has
been given a different type of feed.

It is of interest to know whether the different feed types lead to
systematic differences in weight.

We refer to feed type as a factor having different levels representing the
particular kinds of feed, e.g. linseed, horsebean, and so on.
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One factor ANOVA

Side-by-side boxplots, as displayed below, are a useful way to visualize
these data.

plot(weight ˜ feed, data = chickwts, cex.axis=.75)
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Because feed is a factor, plot() yields box plots.
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One factor ANOVA

From the graph, it seems that horsebean leads to lower weights than
some of the other feed types.

It is hard to tell for sure if there is variability between treatments
because of the variability within treatments, that is noise due to
unmeasured factors.

We can test whether there is a difference in the mean weights
statistically with the analysis of variance (ANOVA).
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One factor ANOVA

A general purpose procedure is as follows:

chick.lm <- lm(weight ˜ feed, data = chickwts)

anova(chick.lm)

## Analysis of Variance Table

##

## Response: weight

## Df Sum Sq Mean Sq F value Pr(>F)

## feed 5 231129 46226 15.365 5.936e-10

## Residuals 65 195556 3009
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One factor ANOVA

The test statistic compares the variability in the averages with the
variability in the noise through an F -statistic.

A p-value is computed which gives the strength of evidence against the
null hypothesis, that is the hypothesis that there is no difference in the
means.

A small p-value – and in this case, it is very small – indicates strong
evidence against the null hypothesis, in favour of the alternative that
there is a difference.
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Multiple Regression

The data frame table.b4 in the MPV library contains the following
columns:

y sale price of the house (in thousands of dollars)

x1 taxes (in thousands of dollars)

x2 number of baths

x3 lot size (in thousands of square feet)

x4 living space (in thousands of square feet)

x5 number of garage stalls

x6 number of rooms

x7 number of bedrooms

x8 age of the home (in years)

x9 number of fireplaces
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Multiple Regression

There are 24 observations on these variables in the data frame.

A natural question to ask is whether any or all of the given variables or
covariates could be used to predict the sale price of a house.

We consider a linear model of the form

y = β0 +
9∑

j=1

βjxj + ε.

The elements of ε are assumed to be uncorrelated random variables with
mean 0 and common variance σ2.

26



Fitting the model

The lm() function will take care of the coefficient estimation, variance
estimation, t and F and p-value calculations in one function call.

For example, if we want to relate house price, y to x1 and x4,

house.lm <- lm(y ˜ x1 + x4, data=table.b4)

We can view the output from this, using the summary function as in

summary(house.lm)

27



Estimating and predicting

The model can now be used to estimate the expected house price for
houses with x1 taxes and x4 amount of living space using the formula

ŷ = 11.5+ 2.92x1 +3.15x4.

This can be accomplished in R using the predict() function.

For instance, suppose we want to estimate the mean sale price for
homes with $2000 taxes and 3000 square feet of living area. Use

predict(house.lm, newdata = data.frame(x1 = 2, x4 = 3))

## 1

## 26.85605

28



Estimating and predicting

For interval estimation, use interval = "confidence" for estimation
and interval = "predict" for prediction. For interval estimation of a
prediction:

predict(house.lm, newdata = data.frame(x1 = 2, x4 = 3),

interval = "predict")

## fit lwr upr

## 1 26.85605 10.23286 43.47925

Interval estimation for the mean:

predict(house.lm, newdata = data.frame(x1 = 2, x4 = 3),

interval = "confidence")

## fit lwr upr

## 1 26.85605 11.42015 42.29196
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Modelling binary responses with logistic regression

The data in p13.1 in the MPV package describes successes and failures
of surface-to-air missiles as they relate to target speed.

Such binary data are not nearly normally distributed, so it the efficacy of
least-squares becomes very questionable here.

We now suggest some of the R functions that can be used to begin to
analyze such data.
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Modelling binary responses with logistic regression

The data are plotted to
the right, with successes
on the vertical axis being
represented by a ‘1’ and
failures being
represented by a ‘0’.
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library(MPV) # contains the p13.1 data frame

plot(p13.1, xlab = "target speed", ylab = "success/failure",

pch=16) # produces a different plotting character
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Modelling binary responses with logistic regression

Perhaps the most popular function for this purpose is the logistic
function

p(x) =
ex

ex+1
.

The function is sketched below.

curve(exp(x)/(1 + exp(x)), from = -3, to = 3, ylab="p(x)")
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Modelling binary responses with logistic regression

The inverse of the logistic function is logit function:

`(p) = log

(
p

1− p

)
.

While p is restricted to take values between 0 and 1, the logit function
can take any possible value, so relating the logit function to a straight
line or other linear combination is a possibility. That is,

`(p(x)) = β0 + β1x

which means that we can express the probability of an event in terms of
a covariate x.

`() is an example of a link function.
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Modelling binary responses with logistic regression

To fit the logistic regression model to the missile success data, try

p13.glm <- glm(y ˜ x, data = p13.1, family = binomial)

To see the results, try ¡¡eval=FALSE¿¿ summary(p13.glm) @ Note that
we did not specify the link function; the default choice with the binomial
family is the logit.

34



Modelling binary responses with logistic regression

If we only want to see the coefficients and their standard errors, try

summary(p13.glm)$coefficients

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 6.0708839 2.108996265 2.878566 0.003994883

## x -0.0177047 0.006075513 -2.914107 0.003567073

This output tells us that the logit of the probability of success as a linear
function of target speed has intercept 6.07 and slope -.0177.

Standard error estimates for these parameter estimates are supplied and
indicate, in particular, that the slope is clearly negative.
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Modelling binary responses with logistic regression

The logistic curve can now be used to calculate probabilities of success
at the various speeds.

We will use the predict() function with type = "response".

If type is not specified, the default is to use the predictions on the linear
scale.
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Modelling binary responses with logistic regression

plot(p13.1, pch=16, xlab = "target speed",

ylab = "success/failure")

newspeeds <- 200:500 # speeds at which we can predict

lines(newspeeds, predict(p13.glm, newdata=

data.frame(x = newspeeds), type = "response"))
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