Event History Data Analysis

X. Joan Hu

Department of Statistics and Actuarial Science Simon Fraser University

UBCO-MDS Short Course
April 28, 2025

Part 1. Preliminaries

- Part 1. Preliminaries
 - 1.1 Introduction
 - 1.2 Basic Concepts
- Part 2. Parametric Analysis
 - 2.1 Commonly Used Parametric Models
 - 2.2 Analysis with Right-Censored Data
- Part 3. Nonparametric/Semiparametric Analysis
 - 3.1 Kaplan-Meier Estimator
 - 3.2 Logrank Test
 - 3.3 Cox Proportinal Hazards Model
- Part 4. Further Topics

1.1 Introduction: What is Event History Data Analysis?

It often focuses on analysis of event times.

- If the event is a failure,
 - **⇒** failure time analysis.
 - e.g. *The Statistical Analysis of Failure Time Data* by Kalbeisch and Prentice
- ▶ If the event is death,
 - \implies survival analysis.
 - e.g. Survival Analysis by Klein and Moeschberger
- ▶ To be positive,
 - ⇒ lifetime data analysis.
 - e.g. Statistical Models and Methods for Lifetime Data by Lawless
 - e.g. the journal of Lifetime Data Analysis; ASA-LiDS section

1.1 Introduction: Why to Study Event History Data Analysis?

There are so many events to deal with. For example,

- death/failuree.g. people's death, products' failure,
- during the COVID-19 pandemic
 e.g. infection, hospitalization, vaccination, restoration to health, ...
- ► terrorist attacks, soccer corner kicks, car accidents, emergency department visits,
- ⇒ demands of statistical learning from event times

1.1 Introduction: What to Study in Event History Data Analysis?

The focus of this short course:

- ▶ to study how to analyze the data (observations) on a continuous r.v. $T \ge 0$ (time to an event)
- ▶ to study how to analyze the data (observations) on $T \ge 0$ conditional on covariates Z

The special features of event time data

- various data structures rarely there are iid observations from the population in practice; it's particularly so with event times.
- medical settings require more robust approaches it's always desirable to play safe there.

1.2 Basic Concepts: Hazard Function and Survivor Function

Consider a continuous r.v. $T \ge 0$, time to an event: for $t \ge 0$,

- **Probability density function (pdf):** f(t)
- cumulative distribution function (cdf): $F(t) = P(T \le t)$
- ▶ survivor (survival) function: $S(t) = P(T \ge t) = 1 F(t)$
- hazard function

$$h(t) = \lim_{\Delta t \to 0+} \frac{1}{\Delta t} P(T \in [t, t + \Delta t) | T \ge t)$$

- The instantaneous occurrence rate of an event at a fixed time given that the event has not already occurred.
- $h(t) = f(t)/S(t); S(t) = \exp\{-\int_0^t h(u)du\}$

1.2 Basic Concepts: Conditional Hazard Function and Survivor Function

Consider a continuous r.v. $T \ge 0$ conditional on Z = z: for $t \ge 0$,

- ightharpoonup conditional probability density function (pdf): f(t|z)
- conditional cumulative distribution function (cdf): $F(t|z) = P(T \le t|Z = z)$
- conditional survivor (survival) function: $S(t|z) = P(T \ge t|Z = z) = 1 F(t|z)$
- hazard function

$$h(t|z) = \lim_{\Delta t \to 0+} \frac{1}{\Delta t} P(T \in [t, t + \Delta t) | Z = z, T \ge t)$$

- The conditional instantaneous occurrence rate of an event at a fixed time given that the event has not already occurred.
- ► h(t|z) = f(t|z)/S(t|z); $S(t|z) = \exp\{-\int_0^t h(u|z)du\}$

1.2 Basic Concepts: Censoring

A Reliability Example: To conduct an experiment to assess the quality of a certain make of (LED) light bulb (the distn of T, the lifetime of such light bulb?)

randomly select n such light bulbs, plug in them at the same time

- wait till all of them burned out: record the lifetimes T_1, \ldots, T_n ; take them as iid observations on T. (if so, one may need to wait for longer than 50,000 hours)
- ▶ alternatively, choosing a time c before the experiment, stop the experiment after time c elapses: only available are T_i if $T_i \le c$, $i = 1, ..., n \Leftarrow \mathbf{type} \mathbf{l}$ censoring
- ▶ or, choosing an interger r < n before the experiment, stop the experiment after r number of light bulbs burn out: only available are $T_{(1)} < T_{(2)} < ... < T_{(r)}$. \Leftarrow **type II censoring**

1.2 Basic Concepts: Censoring

What if it is in a clinical trial ...

... staggered entries of the study subjects, with a predetermined study duration?

⇒ one of the often confronted incomplete data structures:

- **right-censoring** Let C_i be the censoring time associated with study unit i. The observed is $U_i = \min(T_i, C_i)$ (or denoted by $T_i \wedge C_i$).
 - **type I censoring.** $C_i \equiv c$ for all unit i
 - **type II censoring.** $C_i = T_{(r)}$ for all unit i

In general, the right-censored data are presented as

$$\{(U_i, \delta_i) : i = 1, \ldots, n\}: U_i = \min(T_i, C_i); \delta_i = \begin{cases} 1, & T_i \leq C_i \\ 0, & otherwise \end{cases}$$

e.g.
$$n = 3$$
 and $\{(4,1), (9,0), (10,1)\}$

Special features?

2.1 Commonly Used Parametric Distributions: Exponential distribution

Exponential distribution $T \sim NE(\lambda)$ with the rate $\lambda > 0$

$$f(t;\lambda) = \lambda \exp(-\lambda t), \quad t \ge 0$$

(or
$$f(t; \theta) = \frac{1}{\theta} \exp(-t/\theta)$$
, $t \ge 0$ with the scale $\theta > 0$)

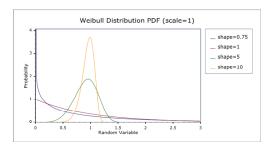
- ► $E(T) = 1/\lambda = \theta$ and $V(T) = 1/\lambda^2$; $S(t) = \exp(-\lambda t)$; $h(t) = \lambda$
 - the only distribution with a constant hazard function.
 - the central role in LiDA
- memoryless property: P(T > a + b | T > a) = P(T > b)
- ► In R,

```
dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)
```

2.1 Commonly Used Parametric Distributions: Weibull distribution Weibull distribution $T \sim Weibull(k, \theta)$ with the scale $\theta > 0$ and shape k > 0.

- $h(t) = \frac{k}{\theta} \left(\frac{t}{\theta} \right)^{k-1}$
- $ightharpoonup T^k \sim NE(1/\theta)$
- ► In R,

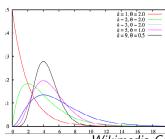
```
dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)
```



2.1 Commonly Used Parametric Distributions: Gamma distribution Gamma distribution $T \sim \Gamma(k, \lambda)$ with the rate $\lambda > 0$ and shape k > 0.

- \blacktriangleright $E(T) = k/\lambda$, $Var(T) = k/\lambda^2$
- ► T_1 , T_2 indpt and $T_j \sim \Gamma(\alpha_j, \lambda)$ for j = 1, 2: $T_1 + T_2 \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$
- ► In R,

```
dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)
```



Wikimedia Commons

2.1 Commonly Used Parametric Distributions: Other distributions

- ▶ **Log-normal distribution** $T \sim logN(\mu, \sigma)$, ie $logT \sim N(\mu, \sigma)$ with $\sigma > 0$.
 - $E(T) = \exp(\mu + \sigma^2/2); S(t) = ?; h(t) = ?$
- Extreme value distribution
- Gumbel distribution
- **...** ...

See books on reliability, such as Lawless (2003), for more examples of parametric models for event time

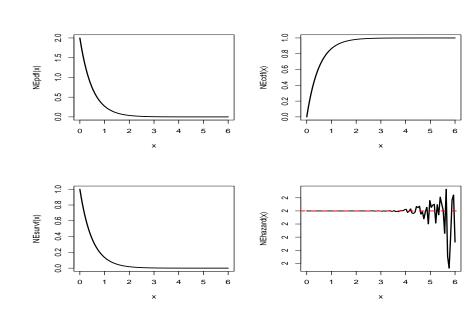
2.1 Commonly Used Parametric Distributions: Exercise 1

Using R to do the following if T follows (i) $NE(\lambda)$ with $\lambda=0.5$ or (ii) $T\sim Weibull(k,\theta)$ with $\theta=0.5, k=3$ [Homework 1]

- ► Generate a random sample with size=1000, and obtain the sample mean, the sample variance, and the sample standard derivation.
- ▶ Plot the density, the cdf, the survivor, and the hazard functions.

```
###Exercise 1.(i)
NEobs<-rexp(n=1000, rate=2)
mean(NEobs); var(NEobs); sd(NEobs)

par(mfrow=c(2,2))
NEpdf<-function(x){dexp(x,rate=2)}
curve(NEpdf, xlim=c(0,6))
NEcdf<-function(x){pexp(x,rate=2)}
curve(NEcdf, xlim=c(0,6))
NESurvf<-function(x){1-pexp(x,rate=2)}
curve(NEsurvf, xlim=c(0,6))
NESurvf<-function(x){4-pexp(x,rate=2)/(1-pexp(x,rate=2))}
curve(NEsurvf, xlim=c(0,6))
NEhazard<-function(x){dexp(x,rate=2)/(1-pexp(x,rate=2))}
curve(NEhazard,xlim=c(0,6))
abline(h=2,lty=2,col="red")</pre>
```



2.2 Analysis with Right-Censored Data

Consider event time r.v. $T \sim f(\cdot; \theta)$: to make inference on θ with a set of right-censored data $\{(U_i, \delta_i) : i = 1, \ldots, n\}$, arising from n indpt individuals.

- Assume **Independent Censoring**, the situations with indpt T_i and C_i for i = 1, ..., n.
- ▶ What is the likelihood function $L(\theta|data)$?

Recall that if there are iid observations T_1, \ldots, T_n on T, ...

2.2 Analysis with Right-Censored Data

If knowing the likelihood function $L(\theta|data)$ with the right-censored data,

$$\Rightarrow$$
 applications of MLE/likelihood-based testing procedures

Consider event time r.v. $T \sim f(\cdot; \theta)$: to make inference on θ with a set of right-censored data $\{(U_i, \delta_i) : i = 1, \ldots, n\}$, arising from n indpt individuals. Plus T_i and C_i are indpt.

$$L(\theta|data) = \prod_{i=1}^{n} L_i(\theta)$$
 with $L_i(\theta)$ is the contribution from unit i : $L_i(\theta) = [U_i = u_i, \delta_i]$ is $[U_i = u_i, \delta_i = 1]$ if $\delta_i = 1$, and $[U_i = u_i, \delta_i = 0]$ if $\delta_i = 0$

Provided $C_i \sim g(\cdot)$ with cdf $G(\cdot)$,

$$[U_i = u_i, \delta_i = 1] = [T_i = u_i, u_i \le C_i]$$

$$= [T_i = u_i | C_i \ge u_i] [C_i \ge u_i] \propto f(u_i; \theta) \bar{G}(u_i);$$

$$[U_i = u_i, \delta_i = 0] = [C_i = u_i, u_i \le T_i]$$

$$= [C_i = u_i | T_i > u_i] [T_i > u_i] \propto g(u_i) \bar{F}(u_i; \theta)$$

Thus

$$L(\theta|data) \propto \prod_{i=1}^n f(u_i;\theta)^{\delta_i} S(u_i;\theta)^{1-\delta_i} = \prod_{i=1}^n h(u_i;\theta)^{\delta_i} S(u_i;\theta)$$

2.2 Analysis with Right-Censored Data: Example

r.v. $T \sim NE(1/\theta)$ with observations from a random sample $\{t_1,\ldots,t_n\}$ subject to right-censoring: the right-censored data $\{(u_i,\delta_i): i=1,\ldots,n\}$, assuming indpt censoring.

- ► Can we use $\bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i$, the sample mean to estimate the population mean of T, $E(T) = \theta$? $(\bar{T} \sim AN(\theta, \theta^2/n))$
- Can the observed sample mean be a 'good estimator' $\tilde{\tilde{\theta}} = \frac{\sum_i \delta_i u_i}{\sum_i \delta_i}$?
- ► How about the mean of the observed event times $\tilde{\theta} = \frac{1}{n} \sum_{i} u_{i}$?
- ▶ What is the MLE of θ with the censored data?

Example. cont'd

$$L(\theta|data) = \prod_{i=1}^{n} \left(\frac{1}{\theta} e^{-u_i/\theta}\right)^{\delta_i} \left(e^{-u_i/\theta}\right)^{1-\delta_i} = \frac{1}{\theta}^{\sum_i \delta_i} \exp(-\sum_i u_i/\theta)$$

$$\log L(\theta) = -\sum_{i} \delta_{i} \log(\theta) - \sum_{i} u_{i}/\theta$$
: concave?

- ▶ the MLE $\hat{\theta} = argmax \log L(\theta)$ (e.g. R: optimx, nlmin, nlminb)
- alternatively, $\frac{\partial log L(\theta)}{\partial \theta} = -\frac{\sum_{i} \delta_{i}}{\theta} + \frac{\sum_{i} u_{i}}{\theta^{2}} : \text{ decreasing?}$ $\frac{\partial^{2} log L(\theta)}{\partial \theta^{2}} = \frac{\sum_{i} \delta_{i}}{\theta^{2}} 2 \frac{\sum_{i} u_{i}}{\theta^{3}} : \text{ negative?}$

Solving
$$\frac{\partial log L(\theta)}{\partial \theta} = 0 \Longrightarrow \text{the MLE } \hat{\theta} = \frac{\sum_{i=1}^{n} u_i}{\sum_{i=1}^{n} \delta_i}$$
: $\hat{\theta} \sim AN(\theta, 1/nFI(\theta)), \quad n >> 1$

How to compare the efficiency of MLE $\hat{\theta}$ with $\bar{T} \sim AN(\theta, \theta^2/n)$?

2.2 Analysis with Right-Censored Data: Exercise

Exercise 2. Consider r.v. T following the exponential distn with scale $\theta=0.5$. Use the generated right-censored observations on T to estimate the population mean θ :

- penerate a set of right-censored data with indpt censoring from n = 1000 indpt individuals: $\{(u_i, \delta_i) : i = 1, ..., n\}$:
 - ▶ sample iid $T_1, \ldots, T_n \sim f(.)$, iid $C_1, \ldots, C_n \sim Unif(0,1)$; obtain $U_i = min(T_i, C_i)$ and $\delta_i = I(T_i \leq C_i)$.
- ▶ calculate (A) $\bar{T} = \sum_i T_i/n$, (B) $\tilde{\tilde{\theta}} = \sum_i \delta_i T_i/\sum_i \delta_i$, (C) $\tilde{\theta} = \sum_i U_i/n$, and (D) the MLE $\hat{\theta}$.
- repeat the two steps above m = 100 times and plot the histograms of the obtained estimates.

```
###Ex2.(i)A Generate n=1000 iid observations from NE(rate=2);
from Unif(0,1). Form a collection of right-censored observation
NEobs<-rexp(n=1000, rate=2)</pre>
```

```
Censoring <-runif (n=1000, min=0,max=1)
Observed <-apply (cbind (NEobs, Censoring),1,min)
Delta <-ifelse (NEobs > Censoring,0,1)
```

```
estm0<-mean(NEobs)
estm1<-mean(NEobs*Delta)
estm2<-mean(Observed)
estm3<-sum(Observed)/sum(Delta)
estimates<-cbind(estm0,estm1,estm2,estm3)</pre>
```

####Ex2.(i)B Calculate the 4 estimates

> estimates

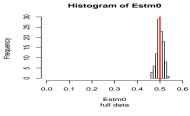
```
estm0 estm1 estm2 estm3
[1,] 0.4993561 0.1467705 0.2881204 0.4993422
```

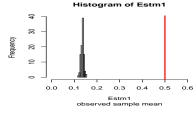
```
###Ex2.(i)C Plot the histograms of the 4 sets of estimates.
each with m=100 repetitions
Estm0<-rep(0.100):
Estm1<-rep(0,100);
Estm2<-rep(0,100);
Estm3<-rep(0.100):
for(i in 1:100){
tmpNEobs <-rexp(n=1000, rate=2)
tmpCensoring <-runif(n=1000, min=0, max=1)
tmpObserved <- apply(cbind(tmpNEobs, tmpCensoring), 1, min)
tmpDelta <- if else (tmpNEobs > tmpCensoring, 0, 1)
Estm0[i]<-mean(tmpNEobs)
Estm1[j] <-mean(tmpNEobs*tmpDelta)
Estm2[j] <-mean(tmpObserved)
Estm3[i]<-sum(tmpObserved)/sum(tmpDelta)
#Estimates <- cbind (Estm0, Estm1, Estm2, Estm3)
par(mfrow=c(2,2))
hist(Estm0,xlim=c(0,0.6),sub="full data")
abline(v=0.5.ltv=1.col="red")
hist(Estm1.xlim=c(0.0.6).sub="observed sample mean")
```

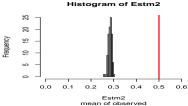
abline(v=0.5,lty=1,col="red")

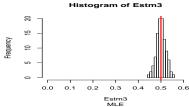
abline(v=0.5,lty=1,col="red") hist(Estm3,xlim=c(0,0.6),sub="MLE") abline(v=0.5,lty=1,col="red")

hist(Estm2,xlim=c(0,0.6),sub="mean of observed")









What do you see? Why?

- the sample mean $\sum_i T_i / n \rightarrow \theta$ (by SLLN)
- ▶ the observed sample mean $\sum_i \delta_i U_i / \sum_i \delta_i \to E(T | T \le C)$
- ▶ the sample mean of the observed $\sum_i U_i/n \to E(T \land C)$
- ▶ the MLE is consistent: $\hat{\theta} \rightarrow \theta$

2.2 Analysis with Right-Censored Data: Two additional issues

In general, suppose $T \sim f(t; \theta)$. Provided that if the data collection subject to indpt right-censoring:

$$\{(U_i,\delta_i): i=1,\ldots,n\}$$

$$L(\theta|\mathbf{U},\boldsymbol{\delta}) = \prod_{i=1}^n f(U_i;\theta)^{\delta_i} S(U_i;\theta)^{1-\delta_i}$$

 \Longrightarrow applications of MLE/likelihood-based testing proceudres

- ightharpoonup Issue 1. how to obtain MLE $\hat{\theta}$?
- $\blacktriangleright \implies$ Issue 2. how to estimate $V(\hat{\theta})$?

Issue 1. EM (Expectation-Maximization) Algorithm (cf: Dumpster, Laird and Rubin, 1977; Self-Consistency Algorithm, cf: Turnbull, 1976) an iterative procedure for computing MLE

e.g. in the setting with right-censored data Define $Q(\theta, \theta^*) = E\{\log L_0(\theta|\mathbf{T})|\mathbf{U}, \boldsymbol{\delta}; \theta^*\}$

Given
$$\theta^{(j-1)}$$
. $i > 1$.

- ► E-step. $Q(\theta, \theta^{(j-1)}) = E\{\log L_0(\theta|\mathbf{T})|\mathbf{U}, \boldsymbol{\delta}; \theta^{(j-1)}\}$
- ▶ M-step. Obtain $\theta^{(j)}$ such that $Q(\theta^{(j)}, \theta^{(j-1)}) = \max_{\textit{all } \theta} Q(\theta, \theta^{(j-1)})$

iterating ... $\Longrightarrow \{\theta^{(j)}: j=1,2,\dots\}$

The sequence converges to $\hat{\theta}$, the maximum point of log $L(\theta|\mathbf{U}, \boldsymbol{\delta})$, provided convergence.

Remarks:

- ▶ Why does it work? $\log L(\theta^{(j)}|\mathbf{U}, \boldsymbol{\delta}) \nearrow \text{as } j \nearrow$
- ▶ When log $L(\theta|\mathbf{T})$ is a linear function of T_1, \ldots, T_n , "E-step" is to get $E(T_i|U_i, \delta_i)$.
- "M-step" is replaced with an "S-step" when to max $Q(\theta, \theta^*)$ with fixed θ^* can be achieved by solving the equation $\partial Q(\theta, \theta^*)/\partial \theta = 0$.
- Why is it so popular? intuitive; not very efficient, though
- MCEM algorithm

Issue 2. Variance Estimation for MLE $\hat{\theta}$

▶ Recall
$$\hat{\theta} \sim AN(\theta, AV(\hat{\theta}))$$
 when $n >> 1$

• if iid case,
$$AV(\hat{\theta}) = \frac{1}{n}FI(\theta)^{-1}$$
; in general,

$$AV(\hat{\theta}) = E\left(-\frac{\partial^2 \log L(\theta)}{\partial \theta^2}\right)^{-1} = V\left(\frac{\partial \log L(\theta)}{\partial \theta}\right)^{-1}$$

• Estimating
$$AV(\hat{\theta})$$
 by $-\frac{\partial^2 \log L(\theta)}{\partial \theta^2}^{-1}\Big|_{\hat{\theta}}$

▶ Robust Variance Estimator: the Huber sandwich estimator is based on

$$E\left(-\frac{\partial^2 \log L(\theta)}{\partial \theta^2}\right)^{-1} V\left(\frac{\partial \log L(\theta)}{\partial \theta}\right) E\left(-\frac{\partial^2 \log L(\theta)}{\partial \theta^2}\right)^{-1}$$

Alternative variance estimator?

Bootstrap, Jackknife resampling variance estimation

e.g. Bootstrap variance estm (cf. Efron and Tibshirani, 1993)

Viewing $\theta = \theta(F)$ and thus $\hat{\theta} = \theta(\hat{F})$...

data
$$\mathbf{X} \Rightarrow \hat{\theta}$$
: $V(\hat{\theta}) = ?$

bootstrap samples $\mathbf{X}_1^*,\dots,\mathbf{X}_B^*\Rightarrow \hat{\theta}_1^*,\dots,\hat{\theta}_B^*$:

$$\bar{\hat{\theta}}^* = \sum_{b=1}^B \hat{\theta}_b^* / B; \quad \hat{V}(\hat{\theta}) = \sum_{b=1}^B (\hat{\theta}_b^* - \bar{\hat{\theta}}^*)^2 / (B-1)$$

Homework 3. Consider r.v. T following the lognormal distribution with $\log(T) \sim N(\mu, 1)$, $\mu = 0$. Use the generated right-censored observations on T to estimate μ :

- Generate a set of right-censored data with indpt censoring from n = 1000 indpt individuals:
 - $\begin{cases} \{(u_i, \delta_i) : i = 1, \dots, n\}: \text{ sample iid} \\ T_1, \dots, T_n \sim lognormal(\mu = 0, \sigma = 1), \text{ iid} \\ C_1, \dots, C_n \sim Unif(0, 1.5); \text{ obtain } U_i = min(T_i, C_i) \text{ and} \\ \delta_i = I(T_i \leq C_i); \end{cases}$
- ▶ Calculate the MLE of μ using the generated data by the EM/MCEM algorithm.
- ▶ Obtain a bootstrap estimate of the MLE's variance using B = 1000.

2.2 Analysis with Right-Censored Data: Final Remarks

- What if the goal is to estimate the conditional distn of $T|Z=z\sim f(\cdot|z;\theta)$ with right-censored data $\{(U_i,\delta_i,z_i):i=1,\ldots,n\}$?
- Recall parametric inference in LIDA ...
 - ▶ What if the parametric model is not plausible?
 - What if it's desirable not to take much risk of model-misspecification?

⇒ the demand of approaches with loose assumptions on the model structure: nonparametric/semi-parametric inference procedures

"Modern Survival Analysis"

Part 3. Nonparametric/Semiparametric Analysis

► Kaplan and Meier (1958, JASA)

product-limit (Kaplan-Meier) estimator for S(t) with right-censored event times – nonparametric estimator

▶ Mantel (1966, Cancer Chem); Gehan (1965, Biometrika) logrank test (extended Wilcoxon test) with right-censored event times – nonparametric test

Cox (1972, JRSSB; 1975, Biometrika)

Cox's proportional hazards model and partial likelihood approach – semiparametric inference

3.1 Kaplan-Meier Estimator

Motivation

 $T_1,\ldots,T_n\sim F(\cdot)$ iid the empirical distribution $\hat{F}_n(t)=\frac{1}{n}\sum_{i=1}^n I(T_i\leq t)$, the nonparametric MLE (Kiefer's version)

the empirical distribution $\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I(T_i \leq t)$

- $\forall t \in [0, \infty),$

 - $ightharpoonup Var{\{\hat{F}_n(t)\}} = F(t)[1 F(t)]/n$
 - $lacksquare \sqrt{n}ig\{\hat{F}_n(t)-F(t)ig\}
 ightarrow {\sf N}(0,F(t)[1-F(t)])$ in distn, as $n o\infty$
- $ightharpoonup \sup_{t>0} \left| \hat{F}_n(t) F(t) \right| o 0 \text{ a.s.}$
- $\sqrt{n}\{\hat{F}_n(t) F(t)\} \rightarrow \text{Gaussian Process with mean zero and variance function } F(t)[1 F(t)] \text{ in distribution (weak convergence)}$

What if $\{(U_i, \delta_i) : i = 1, ..., n\}$?

Table 1a Life table for the first year of life, Canada, 2000 to 2002: males

Age x	I _x	d _x	p_{x}	q_x	cv(q _x)	L _x	T _x	e _x	cv(e _x)
O to 1 day	100000	252	0.99748	0.00252	4.8	273	7691798	76.92	0.04
0 to 1 day		232			16.0	273		76.92	0.04
1 to 2 days	99748		0.99977	0.00023			7691525		
2 to 3 days	99725	20	0.99998	0.00020	17.1	273	7691252	77.12	0.04
3 to 4 days	99705	14	0.99986	0.00014	20.9	273	7690979	77.14	0.04
4 to 5 days	99691	11	0.99989	0.00011	23.1	273	7690706	77.15	0.04
5 to 6 days	99680	8	0.99991	0.00009	26.1	273	7690433	77.15	0.04
6 to 7 days	99672	7	0.99994	0.00006	30.6	273	7690160	77.15	0.04
0 to 7 days	100000	335	0.99665	0.00335	4.2	1911	7691798	76.92	0.04
7 to 14 days	99665	40	0.99959	0.00041	12.1	1909	7689887	77.16	0.04
14 to 21 days	99625	23	0.99977	0.00023	16.1	1908	7687978	77.17	0.04
21 to 28 days	99602	13	0.99987	0.00013	21.2	1909	7686070	77.17	0.04
0 to 28 days	100000	411	0.99589	0.00411	3.8	7637	7691798	76.92	0.04
28 days to 2 months	99589	48	0.99952	0.00048	11.1	8963	7684161	77.16	0.04
2 to 3 months	99541	33	0.99967	0.00033	13.3	8294	7675198	77.11	0.04
3 to 4 months	99508	21	0.99979	0.00021	16.7	8291	7666904	77.05	0.04
4 to -5 months	99487	16	0.99984	0.00016	19.5	8290	7658613	76.98	0.04
5 to 6 months	99471	12	0.99988	0.00012	22.0	8289	7650323	76.91	0.04
6 to 7 months	99459	12	0.99987	0.00013	21.6	8288	7642034	76.84	0.04
7 to 8 months	99447	6	0.99994	0.00006	32.2	8287	7633746	76.76	0.04
8 to 9 months	99441	5	0.99995	0.00005	34.0	8286	7625459	76.68	0.04
9 to 10 months	99436	7	0.99994	0.00006	30.6	8286	7617173	76.60	0.04
10 to 11 months	99429	5	0.99995	0.00005	34.0	8286	7608887	76.53	0.04
11 to 12 months	99424	4	0.99996	0.00004	37.8	8285	7600601	76.45	0.04

Note: Estimates with a coefficient of variation (cv) greater than 33.3% are to be used with caution F too unreliable to be published (indicates a cv of at least 100.0%).

Recall "Actuarial Life Table"

i	time nterval	number of death	number of withdrawal	number at risk	\hat{q}_{j}	$\hat{ ho}_{j}$	\hat{P}_{j}			
	I ₁									
					_					
	I_j	D_j	W_{j}	N_j	$\frac{D_j}{N_i - \frac{1}{2} W_i}$	$1-\hat{q}_j$				
					, 2,					
	I_K									
_	p_j =P(an individual survives beyond I_j beyond I_{j-1})									
$q_j = 1 - p_j = P(an \; individual \; dies \; in \; I_j beyond \; I_{j-1})$										
1	$P_j = P(an individual survives beyond I_j)$									

Rationale?

3.1 Kaplan-Meier Estimator

In general, $F \in \mathcal{F} = \{all\ cdfs\}$ With the right-censored data, the likelihood function

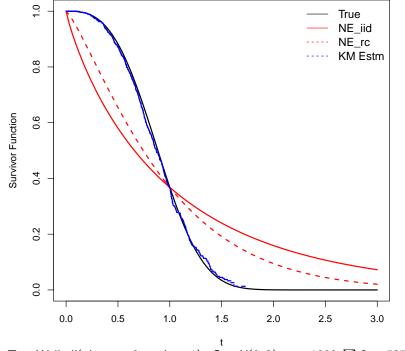
$$L(F) = \prod_{i=1}^n dF(u_i)^{\delta_i} [1 - F(u_i)]^{1 - \delta_i}$$

Maximize L(F) as $F(\cdot)$ having only masses at the distinct observed event times: $0 = V_0 \le V_1 < \ldots < V_J \le V_{J+1}$ \Longrightarrow the Kaplan-Meier estimator (left-continuous)

$$\hat{S}(t) = \prod_{j:V_j < t} \left(1 - \frac{n_j}{N_j}\right) = \left\{ egin{array}{l} 1 & t \leq V_1 \\ \prod_{j=1}^{j} (1 - \hat{h}_j) & V_j < t \leq V_{j+1} \\ t > V_{J+1} \end{array}
ight.$$

3.1 Kaplan-Meier Estimator: Exercise 4

```
####Ex4.A Generate n=1000 iid observations from Weibull(shape=
#### from Unif(0,2). Then form a collection of right-censored
WBobs2<-rweibull(n=1000, shape=3, scale=1)
Censoring2<-runif(n=1000, min=0, max=2)</pre>
Observed2 <- apply (cbind (WBobs2, Censoring2), 1, min)
Delta2 <- if else (WBobs2 > Censoring2,0,1)
sum(Delta2);
[1] 527
###KM estm with censored data
### R package 'survival':
library("survival")
KMestm <- survfit (Surv (Observed2, Delta2)~1)</pre>
> objects(KMestm)
 [1] "call" "conf.int" "conf.type" "lower"
         "n.censor" "n.event" "n.risk"
 [5] "n"
 [9] "std.err" "surv" "time"
                                          "type"
[13] "upper"
```



 $T \sim Weibull(shape = 3, scale = 1); \ C \sim U(0,2); \ n = 1000, \sum \delta_i = 527$

3.1 Kaplan-Meier Estimator: Remarks

- Recall the alternative pointwise CI: for t > 0, $(\hat{S}_{KM}(t)e^{-1.96\sqrt{\hat{V}ar(\hat{S}_{KM}(t))}}, \hat{S}_{KM}(t)e^{1.96\sqrt{\hat{V}ar(\hat{S}_{KM}(t))}})$
- For comparing two populations' distn with censored data e.g. $\sup_{t>0} |\hat{S}_{1,KM}(t) \hat{S}_{2,KM}(t)|$? an extension of the Kolmogorov-Smirnov test statistic $\sup_{t>0} |F_{1,n}(t) F_{2,m}(t)|$ no need to specify the population distributions into parametric models
- ▶ for assessing parametric goodness-of-fit with censored data
 - e.g. is $T \sim NE(\lambda)$ $(H(t) = \lambda t)$? \implies to check if $\log S(t) = -\lambda t$?
 - e.g. is $T \sim Weibull(\lambda, \rho)$ $(H(t) = \lambda t^{\rho})$? \implies to check if $\log(-\log S(t)) = \log \lambda + \rho \log t$?

3.2 Logrank Test

Introduction

Consider to compare two groups wrt the event time distns

For example,

- ▶ in the placebo group, iid $T_{0i} \sim F_0(\cdot)$: i = 1, ..., n
- ▶ in the treatment group, iid $T_{1j} \sim F_1(\cdot)$: j = 1, ..., m

$$\implies H_0: F_0(\cdot) = F_1(\cdot)$$

- ... Many different ways to differ: any UMP?
 - ▶ directional tests: designated/oriented to a specific type of difference between the two population distns e.g. $S_1(t) = S_0(t)^c$
 - omnibus tests: there is power to detect all or most types of differences but not with great power for a specific difference

Early work with censored data

- ▶ Gehan (1965, Biometrika): modifying rank tests to allow censoring
 ⇒ Wilcoxon-Gehan testing procedure ...
- Mantel (1966, Cancer Chem): adapting data to use methods for several 2 × 2 tables
 ⇒ Logrank testing procedure ...
- Application of the Cox partial likelihood approach (Cox, 1975)*

3.2 Logrank Test

with all observed distinct event times: $0 < V_1 < \dots, V_K$

First, consider what happens at time $t = V_1 \dots$

	at $t = V_I$		
Group	failure	not	at risk
placebo	n ₀₁	_	N ₀₁
treatment	n_{1I}	_	N _{1/}
total	n _{.1}	-	N _{.1}

- the expected number of failures from treatment group $E_l = E(O_l) = n_l \frac{N_{1l}}{N_l}$ under H_0
- $V(O_l) = \frac{N_l N_{1l}}{N_l 1} N_{1l} (\frac{n_l}{N_l}) (1 \frac{n_l}{N_l})$ under H_0

Now, pull together the information at all the observed failure times

...

$$Z = \frac{\sum_{l=1}^{K} (O_l - E_l)}{\sqrt{\sum_{l=1}^{K} V(O_l)}} \sim N(0, 1)$$

approximately under H_0

3.2 Logrank Test

Example. Group 0: 3.1, 6.8⁺, 9, 9, 11.3⁺, 16.2 Group 1: 8.7, 9, 10.1⁺, 12.1⁺, 18.7, 23.1⁺

3.2 Logrank Test: Variants of Logrank Test

What if the subjects are stratified according to a factor, say, gender?
Stratified Logrank Test with the factor of K levels

$$Z = \frac{\sum_{k=1}^{K} (O^{(k)} - E^{(k)})}{\left(\sum_{k} V^{(k)}\right)^{1/2}} \sim N(0, 1)$$

approximately under H_0 .

► What if there is a need to weight the information at different times differently?

Weighted Logrank Test

$$Z_W = \frac{\sum_{l=1}^L w_l(O_l - E_l)}{\left(\sum_l w_l^2 V_l\right)^{1/2}} \sim N(0, 1)$$

approximately under H_0 .

How to choose the weights in general?

▶ If $w_I = N_{.I}$, the test is similar to Gehan test.

3.2 Logrank Test: Variants of Logrank Test

▶ What if to compare p treatment groups with the placebo group?

$$H_0: S_0(\cdot) = S_1(\cdot) = \ldots = S_p(\cdot)$$

Given all the distinct failure times are $0 < V_1 < \ldots < V_L < \infty$, at $t = V_I$

Group	failure	not	at risk
placebo	<i>n</i> _{0/}		N ₀₁
treatment 1	$n_{1/}$		N _{1/}
:	•	•	:
treatment p	n_{pl}		N_{pl}
total	n _{.1}		N _{.1}

$$\mathbf{O}_{l} = \begin{pmatrix} n_{1l} \\ \vdots \\ n_{pl} \end{pmatrix}; \; \mathbf{E}_{l} = E\{\mathbf{O}_{l}\} = \begin{pmatrix} N_{1l} \\ \vdots \\ N_{pl} \end{pmatrix} \frac{n.l}{N_{.l}}; \; \mathbf{V}_{l} = Var\{\mathbf{O}\}$$
$$\tilde{\mathbf{O}} = \sum_{l=1}^{L} \mathbf{O}_{l}, \; \tilde{\mathbf{E}} = \sum_{l=1}^{L} \mathbf{E}_{l}, \; \tilde{\mathbf{V}} = \sum_{l=1}^{L} \mathbf{V}_{l}$$

$$\left(\tilde{\mathbf{O}} - \tilde{\mathbf{E}}\right)' \tilde{\mathbf{V}}^{-1} \left(\tilde{\mathbf{O}} - \tilde{\mathbf{E}}\right) \sim \chi^{2}(\rho)$$

approximately under H_0 , provided the sample size is large.

- The test is omnibus. If a trend test is intended?

3.3 Cox Proportinal Hazards Model

- lacktriangle Recall the two-sample problem o testing on H_0 : $h_1(\cdot)=h_0(\cdot)$
 - $Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}$ to study event time T|Z = z?
 - with general covariates Z, to explore event time T|Z=z? \Longrightarrow regression modeling?
- ► Feigl and Zelen (1965) $T|Z = z \sim NE(\lambda_z)$: $h(t|z) = \lambda_z = \lambda_0 e^{\beta z}$ $\beta = 0 \rightarrow \text{no effect of } Z$
- ⇒ Cox Proportional Hazards Model (Cox, JRSSB 1972)

Cox Proportional Hazards Model: (Cox, JRSSB 1972)

The hazard function of event time T|Z = z is

$$h(t|z) = h_0(t)e^{\beta z}, \quad t > 0$$

The conditional survivor function is

$$S(t|z) = \exp(-\int_0^t h_0(u)e^{\beta z}du) = \exp(-H_0(t)e^{\beta z}), \quad t > 0$$

Remark:

the hazard ratio $h(t|Z=z_1)/h(t|Z=z_0)=e^{\beta(z_1-z_0)}$ for all t>0 proportional!

3.3 Cox Proportional Hazards Model: Estimation of β

Often is interested to estm β in the Cox PH model, for comparison/evaluate/assess effect

With right-censored event times along with the covariates

$$\{(U_i,\delta_i,Z_i): i=1,\ldots,n\}$$

from *n* indpt subjects and indpt censoring

$$L(\beta, h_0(\cdot)|data) = \prod_{i=1}^n \left(h_0(u_i)e^{\beta z_i}\right)^{\delta_i} \exp(-H_0(u_i)e^{\beta z_i})$$

$$L(\beta, h_0(\cdot)|data) = L_1(\beta|data)L_2(\beta, h_0(\cdot)|data)$$

 \implies the Cox partial likelihood function (Cox, Biometrika 1975)

the Cox partial likelihood function (Cox, Biometrika 1975)

$$L_1(etaig|\mathit{data}) = \prod_{i=1}^n \Big(rac{e^{eta z_i}}{\sum_{l \in \mathcal{R}_i} e^{eta z_l}}\Big)^{\delta_i}$$

the risk set at time u_i : $\mathcal{R}_i = \{j : u_j \geq u_i\}$

 \implies the MPLE (maximum partial likelihood estimator) of β :

$$\hat{\beta} = \operatorname{argmax}_{\mathsf{all}} \ _{\beta} \mathsf{L}_1(\beta | \mathsf{data})$$

With some conditions, as $n \to \infty$

- $ightharpoonup \hat{\beta}
 ightarrow \beta$ a.s.
- $ightharpoonup \sqrt{n}(\hat{eta}-eta)
 ightarrow N(0,?)$ in distn

Example. n = 5 indpt subjects and $Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}$ (u_i, δ_i, z_i) : (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)

$$(u_i, \delta_i, z_i)$$
: (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)

 $\implies \hat{\beta} = \frac{1}{2} \log 2 - \log 3$

$$(u_i, \delta_i, z_i)$$
: (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)

 $L_1(eta) \propto rac{e^{eta}}{(3e^{eta}+2)(3e^{eta}+1)}, \ \ \partial \log L_1(eta) ig/ \partial eta = 1 - rac{9e^{eta}(2e^{eta}+1)}{(3e^{eta}+2)(3e^{eta}+1)}$

3.3 Cox Proportional Hazards Model: Testing on β

Consider $H_0: \beta = 0$ vs $H_1: \beta \neq 0$ the partial score test

$$U(\beta) = \partial \log L_1(\beta) / \partial \beta = \sum_{i=1}^n \delta_i \left[z_i - \frac{\sum_{l \in \mathcal{R}_i} z_l e^{\beta z_l}}{\sum_{l \in \mathcal{R}_i} e^{\beta z_l}} \right]$$

Based on $U(\beta)/\sqrt{n} \sim AN(0,??)$ as $n \to \infty$ with some conditions, \Longrightarrow the partial score testing procedure ...

Remark.

• e.g. when $Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}$ $U(\beta)\big|_{\beta=0} = \sum_{I=1}^{L} \left(O_{I} - n_{.I} \frac{N_{1I}}{N_{.I}}\right) = O - E, \text{ the numerator of the logrank test statistic}$

3.3 Cox Proportional Hazards Model: Exercise 5

```
####Ex5.A Generate n=1000 observations from each
####NE(rate=1) and NE(rate=exp(0.5)); from each Unif(0,1),Unit
####for censoring times. Then form a collection of right-censor
sum(Delta3a); sum(Delta3b);
Γ1] 365
[1] 632
###Cox PH model fits with censored data
### R package 'survival':
library("survival")
Coxphoverall <-coxph(Surv(c(Observed3a,Observed3b),
c(Delta3a.Delta3b))~Zindicator)
> summary(Coxphoverall)
  n= 2000, number of events= 997
             coef exp(coef) se(coef) z Pr(>|z|)
Zindicator 0.47304 1.60486 0.06639 7.125 1.04e-12 ***
          exp(coef) exp(-coef) lower .95 upper .95
Zindicator
              1.605 0.6231 1.409
                                          1.828
Concordance = 0.553 (se = 0.009)
Rsquare= 0.026 (max possible= 0.999)
Likelihood ratio test= 52.31 on 1 df, p=5e-13
Wald test = 50.76 on 1 df, p=1e-12
```

Score (logrank) test = 51.7 on 1 df, p=6e-13

Part 4. Further Topics

- More unconventional data structures
 - interval censoring
 - current status data
 - truncated data
 - competing risks
 -
- ► Beyond survival analysis
 - what if the event is recurrent?
 - what if there are multiple types of events?
 - what if events take place spatio-temporally?
 - **•**

Thank-you for your participation in this course!

What have we studied?

- Part 1. Preliminaries
 - Introduction
 - Basic concepts
- Part 2. Parametric Interence in LIDA
 - Commonly used parametric models
 - Inference with right-censored data
- ▶ Part 3. Nonparametric/Semi-parametric Approaches
 - Kaplan-Meier estimator
 - Logrank test
 - Cox proportional hazards model
- ► Part 4. Further Topics