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1.1 Introduction: What is Event History Data Analysis?

It often focuses on analysis of event times.

» If the event is a failure,
= failure time analysis.
e.g. The Statistical Analysis of Failure Time Data by
Kalbeisch and Prentice

> If the event is death,
= survival analysis.
e.g. Survival Analysis by Klein and Moeschberger

> To be positive,
— lifetime data analysis.
e.g. Statistical Models and Methods for Lifetime Data by
Lawless
e.g. the journal of Lifetime Data Analysis;, ASA-LIDS section



1.1 Introduction: Why to Study Event History Data Analysis?

There are so many events to deal with. For example,

» death/failure
e.g. people's death, products’ failure, ... ...

» during the COVID-19 pandemic

e.g. infection, hospitalization, vaccination, restoration to
health, ... ...

P terrorist attacks, soccer corner kicks, car accidents, emergency
department visits, ... ...

— demands of statistical learning from event times



1.1 Introduction: What to Study in Event History Data Analysis?

The focus of this short course:

» to study how to analyze the data (observations) on a
continuous r.v. T > 0 (time to an event)

» to study how to analyze the data (observations) on T > 0
conditional on covariates Z

The special features of event time data

» various data structures — rarely there are iid observations from
the population in practice; it's particularly so with event times.

P> medical settings require more robust approaches — it's always
desirable to play safe there.



1.2 Basic Concepts: Hazard Function and Survivor Function

Consider a continuous r.v. T > 0, time to an event: for t > 0,

» probability density function (pdf): f(t)

» cumulative distribution function (cdf): F(t) = P(T <'t)

» survivor (survival) function: S(t) = P(T >t)=1— F(t)
» hazard function

1
= 1 — >
h(t) All—%+AtP(T€[t’t+At)‘T—t)

» The instantaneous occurrence rate of an event at a fixed time
given that the event has not already occurred.

> (t)/S(t) = exp{— [, h(u)du}



1.2 Basic Concepts: Conditional Hazard Function and Survivor Function

Consider a continuous r.v. T > 0 conditional on Z = z: for t > 0,

» conditional probability density function (pdf): f(t|z)
» conditional cumulative distribution function (cdf):
F(t|z) = P(T <t|Z=2z)
» conditional survivor (survival) function:
S(tlz) =P(T > t|Z=2z)=1- F(t|z)
» hazard function

h(t|z) = I|m EP(T Eltt+At)|Z=2T2>1¢)

» The conditional instantaneous occurrence rate of an event at a
fixed time given that the event has not a/ready occurred.
> h(t|z) = f(t\z)/S(t|z 5(t|z) = exp{— fo (u|z)du}



1.2 Basic Concepts: Censoring

A Reliability Example: To conduct an experiment to assess the quality of
a certain make of (LED) light bulb ... ... (the distn of T, the lifetime of
such light bulb?)
randomly select n such light bulbs, plug in them at the same time
» wait till all of them burned out: record the lifetimes
T1,..., T,; take them as iid observations on T.
(if so, one may need to wait for longer than 50,000 hours)

> alternatively, choosing a time ¢ before the experiment, stop
the experiment after time c elapses: only available are T; if
Ti<c i=1,...,n < type | censoring

» or, choosing an interger r < n before the experiment, stop the
experiment after r number of light bulbs burn out: only
available are T(;) < T(3) < ... < T(,). < type |l censoring



1.2 Basic Concepts: Censoring

What if it is in a clinical trial ...
. staggered entries of the study subjects, with a predetermined
study duration?
= one of the often confronted incomplete data structures:
» right-censoring Let C; be the censoring time associated with
study unit /. The observed is U; = min(T;, C;) (or denoted by
T; A C,').
» type | censoring. C; = c for all unit /
> type Il censoring. C; = T, for all unit i

In general, the right-censored data are presented as
{(Ui,6:) - i=1,...,n}: Uy =min(T;, G;); &; = L <G
R R b 0, otherwise

e.g. n=3and {(4,1),(9,0),(10,1)}

Special features?



2.1 Commonly Used Parametric Distributions: Exponential distribution

Exponential distribution T ~ NE()) with the rate A >0
f(t;\) = Aexp(=At), t>0

(or f(t;0) = % exp(—t/0), t > 0 with the scale § > 0)
E(T)= 1/ =0 and V(T)=1/)?; S(t) = exp(—\t);
h(t) =

> the only distribution with a constant hazard function.
» the central role in LiDA

» memoryless property: P(T > a+ b|T > a) = P(T > b)
> In R,

dexp(x, rate
pexp(q, rate
gexp(p, rate
rexp(n, rate

1, log = FALSE)

1, lower.tail = TRUE, log.p
1, lower.tail = TRUE, log.p
1)

FALSE)
FALSE)



2.1 Commonly Used Parametric Distributions: Weibull distribution

Weibull distribution T ~ Weibull(k, ) with the scale § > 0 and
shape k > 0.

> h(t) = g(g)k_l
> Tk~ NE(1/6)
> |In R,

dweibull (x, shape, scale = 1, log = FALSE)

pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)

queibull (p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
=1

rweibull (n, shape, scale

Weibull Distribution PDF (scale=1)

_ shape=0.75
_ shape=1

__ shape=5
shape=10
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2.1 Commonly Used Parametric Distributions: Gamma distribution
Gamma distribution T ~ I'(k, \) with the rate A > 0 and shape

k> 0.
> E(T)=k/\ Var(T) = k/X\?
» T1, T, indpt and Tj ~ [(aj, ) for j = 1,2:
T1+ Ty ~ F(a1 -+ 042,/\)
> 2T ~ x%(2K)

> |In R,
dgamma (x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
qgamma (p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
rgamma (n, shape, rate = 1, scale = 1/rate)
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2.1 Commonly Used Parametric Distributions: Other distributions

» Log-normal distribution T ~ logN(u, o), ie logT ~ N(u, o)
with o > 0.
> E(T)=exp(u+02/2); S(t) =7; h(t) =2

> Extreme value distribution

» Gumbel distribution

See books on reliability, such as Lawless (2003), for more examples
of parametric models for event time



2.1 Commonly Used Parametric Distributions:
Exercise 1

Using R to do the following if T follows (i) NE(A) with A = 0.5 or
(i) T ~ Weibull(k,8) with 8 = 0.5, k = 3 [Homework 1]
» Generate a random sample with size=1000, and obtain the

sample mean, the sample variance, and the sample standard
derivation.

» Plot the density, the cdf, the survivor, and the hazard
functions.

###Exercise 1.(i)
NEobs <-rexp(n=1000, rate=2)
mean (NEobs) ; var (NEobs); sd(NEobs)

par (mfrow=c(2,2))

NEpdf <-function(x){dexp(x,rate=2)}

curve (NEpdf, xlim=c(0,6))

NEcdf <-function(x){pexp(x,rate=2)}

curve (NEcdf, xlim=c(0,6))

NEsurvf <-function(x){l-pexp(x,rate=2)}

curve (NEsurvf, xlim=c(0,6))
NEhazard<-function(x){dexp(x,rate=2)/(1-pexp(x,rate=2))}
curve (NEhazard ,xlim=c(0,6))

abline(h=2,lty=2,col="red")
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2.2 Analysis with Right-Censored Data

Consider event time r.v. T ~ f(+;0): to make inference on 6 with
a set of right-censored data {(U;,d;) : i =1,...,n}, arising from n
indpt individuals.

» Assume Independent Censoring, the situations with indpt T;
and Cjfori=1,...,n.

» What is the likelihood function L(6|data)?

Recall that if there are iid observations Ty,..., T, on T, ...



2.2 Analysis with Right-Censored Data
If knowing the likelihood function L(f|data) with the

right-censored data,
—> applications of MLE/likelihood-based testing proceudres
Consider event time r.v. T ~ f(+;0): to make inference on 6§ with a set
of right-censored data {(U;,d;) : i =1,...,n}, arising from n indpt
individuals. Plus T; and C; are indpt.
L(0|data) = []:_, Li(0) with L;(6) is the contribution from unit i
L,'(e) = [U,' = U/,5/] is [U,' = u,~,6,- = 1] if (5,' = 1, and [U,' = U/,(5; = 0] if
9 =0.
Provided C; ~ g(-) with cdf G(-),
> [Ui=u, 6 =1]=[T; = uj, u; < C]
=[Ti = ui|G > u][G > u]] o f(u; 0)G(u;);
> [Ui=u;,0; =0] = [C; = uj,u; < T}
=[G =u|Ti = u][Ti > uj] x g(u;)F(u;; 0)
Thus

L(0|data) H f(ui; )% S(uj; 0)1 % = Hh u;; 0)% S (u;; 9)

i=1



2.2 Analysis with Right-Censored Data: Example

rv. T ~ NE(1/6) with observations from a random sample
{t1,...,ty} subject to right-censoring: the right-censored data
{(u,-,é,-) =1, n}, assuming indpt censoring.
» Can we use T = %Z,’-’:l T;, the samEIe mean to estimate the
population mean of T, E(T) =07 (T ~ AN(6,62/n))

» Can the observed sample mean be a 'good estimator’
5 Z d; ui -

1

» How about the mean of the observed event times
7]

:12 ul

» What is the MLE of 6 with the censored data?



Example. cont'd

12:“51'

L(0|data) = ﬁ (%e*“f/(’)ai (e’””/(’)l_&i =3 exp(— Z ui /0)
i=1

i

log L(6) = — 3", 0ilog(#) — 3=, ui/6: concave?

> the MLE 0 = argmaxlog L(#) (e.g. R: optimx, nlmin,
nlminb)

> alternatively,

5 e i

8"’5;‘9’ = —Z(; L4 Zg’zu’: decreasing?

Plogl(6) _ 35,6 2Zi i
007 T 62 ‘63

. negative?
Solving 22660) = 0 — the MLE § = §L4
0 ~ AN(0,1/nF1(0)), n>>1

How to compare the efficiency of MLE § with T ~ AN(6,62/n)?



2.2 Analysis with Right-Censored Data: Exercise

Exercise 2. Consider r.v. T following the exponential distn with scale
6 = 0.5. Use the generated right-censored observations on T to estimate
the population mean 6:

> generate a set of right-censored data with indpt censoring from
n = 1000 indpt individuals: {(u,-,é,-) =1, n}:

» sampleiid T1,..., T, ~ f(.), iid G, ..., C, ~ Unif(0,1);
obtain U; = min(T,-, C,) and §; = I(T, < C,)
> calculate (A) 7=, Ti/n, (B) 6= 5,6:T:/ 3,61, (C)
6 =3, Ui/n, and (D) the MLE 4.

» repeat the two steps above m = 100 times and plot the histograms
of the obtained estimates.



###Ex2.(i)A Generate n=1000 iid observations from NE(rate=2);
from Unif (0,1). Form a collection of right-censored observatic

NEobs<-rexp(n=1000, rate=2)

Censoring<-runif (n=1000, min=0,max=1)
Observed<-apply(cbind (NEobs,Censoring) ,1,min)
Delta<-ifelse (NEobs>Censoring ,0,1)

####Ex2.(i)B Calculate the 4 estimates
estmO<-mean (NEobs)

estml<-mean (NEobs*Delta)

estm2<-mean (Observed)
estm3<-sum(0Observed)/sum(Delta)
estimates<-cbind(estm0,estml,estm2,estm3)

> estimates
estmO estml estm2 estm3
[1,] 0.4993561 0.1467705 0.2881204 0.4993422



###Ex2.(i)C Plot the histograms of the 4 sets of estimates,
each with m=100 repetitions

EstmO<-rep (0,100);

Estml<-rep (0,100);

Estm2<-rep (0,100);

Estm3<-rep (0,100);

for(j in 1:100){

tmpNEobs <-rexp(n=1000, rate=2)

tmpCensoring<-runif (n=1000, min=0,max=1)
tmpObserved<-apply (cbind (tmpNEobs , tmpCensoring),1,min)
tmpDelta<-ifelse (tmpNEobs>tmpCensoring ,0,1)

EstmO[jl<-mean (tmpNEobs)
Estmi[jl<-mean(tmpNEobs*tmpDelta)
Estm2[jl<-mean (tmpObserved)
Estm3[jl<-sum(tmpObserved)/sum(tmpDelta)

}
#Estimates<-cbind (EstmO ,Estml ,Estm2,Estm3)

par (mfrow=c(2,2))

hist (Estm0,x1lim=c(0,0.6),sub="full data")
abline(v=0.5,1lty=1,col="red")

hist (Estml,x1im=c(0,0.6) ,sub="observed sample mean")
abline(v=0.5,1lty=1,col="red")

hist (Estm2,x1im=c(0,0.6) ,sub="mean of observed")
abline(v=0.5,1lty=1,col="red")

hist (Estm3,x1im=c(0,0.6),sub="MLE")
abline(v=0.5,1lty=1,col="red")
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What do you see? Why?

> the sample mean >_; T;/n — 6 (by SLLN)

> the observed sample mean >, 6;U;/ > 6; — E(T|T < C)
> the sample mean of the observed Y, U;/n — E(T A C)
>

the MLE is consistent: 6 — 6



2.2 Analysis with Right-Censored Data: Two additional issues

In general, suppose T ~ f(t;6). Provided that if the data
collection subject to indpt right-censoring:

{(Uf,5,') = 1,...,!7}
L(0|U, &) = [, f(Ui; )% S(U;; 9)* 9

— applications of MLE/likelihood-based testing proceudres

» — Issue 1. how to obtain MLE 7

> — Issue 2. how to estimate V/()?



Issue 1. EM (Expectation-Maximization) Algorithm (cf:
Dumpster, Laird and Rubin, 1977; Self-Consistency Algorithm, cf:
Turnbull, 1976) an iterative procedure for computing MLE

e.g. in the setting with right-censored data ... ...
Define Q(6,0%) = E{ log Lo(#|T)|U, 6; 6* }

Given AU-D) j > 1,
> E-step. Q(0,0U1)) = E{log Lo(6|T)|U,d;0U~1}
» M-step. Obtain 8U) such that
Q(OY), U=V = max,y g Q(6,0U~Y)
iterating ... — {9(/) j=12,.. }

The sequence converges to 0, the maximum point of log L(6|U, d),
provided convergence.



Remarks:
» Why does it work? log L(W)|U,8) Hasj ~

» When log L(|T) is a linear function of Ty,..., T,, “E-step” is
to get E(T;|U;, 0;).

» “M-step” is replaced with an “S-step” when to max Q(6,6*)
with fixed 6* can be achieved by solving the equation

9Q(0,6%)/00 = 0.

» Why is it so popular?
intuitive; not very efficient, though

» MCEM algorithm



Issue 2. Variance Estimation for MLE @
> Recall § ~ AN(G,AV(GA)) when n >>1

> if iid case, AV() = LFI(0)71;
in general,

_ &log L(0)

) dlog L(6),
962

AV(@) = E( 90 )

=V(

R ~1
» Estimating AV(6) by —%

» Robust Variance Estimator: the Huber sandwich estimator is
based on

-1

B 0% log L(6) 0log L(0) B 0?log L(0),

p(- 7810~y 2oel0) g Tl D),



» Alternative variance estimator?
Bootstrap, Jackknife resampling variance estimation

> e.g. Bootstrap variance estm (cf. Efron and Tibshirani, 1993)
Viewing § = A(F) and thus § = 6(F) ...

data X = 8: V(f) =

bootstrap samples X7, ..., X5 = @1‘7 e ,éfg:
_ B B
0 =Y 0;/B; V(0) =) (6; —-1)
b=1 b=1



2.2 Analysis with Right-Censored Data: Exercise 3/Homework 3

Homework 3. Consider r.v. T following the lognormal distribution
with log(T) ~ N(u,1), n = 0. Use the generated right-censored
observations on T to estimate yu:
» Generate a set of right-censored data with indpt censoring
from n = 1000 indpt individuals:
> {(u,-,é,') i= 1,...,n}: sample iid
Ti,..., Tp ~ lognormal(p = 0,0 = 1), iid
G, ..., C, ~ Unif(0,1.5); obtain U; = min(T;, ;) and
6i=I(Ti < G);
» Calculate the MLE of u using the generated data by the
EM/MCEM algorithm.

» Obtain a bootstrap estimate of the MLE's variance using
B = 1000.



2.2 Analysis with Right-Censored Data: Final Remarks

> What if the goal is to estimate the conditional distn of
T|Z = z ~ f(-|z; 0) with right-censored data
{(Ui,6i,2)):i=1,...,n}7

» Recall parametric inference in LIDA ...

» What if the parametric model is not plausible?
» What if it's desirable not to take much risk of
model-misspecification?

— the demand of approaches with loose assumptions on the
model structure: nonparametric/semi-parametric inference
procedures

“Modern Survival Analysis’



Part 3. Nonparametric/Semiparametric Analysis
Overview
» Kaplan and Meier (1958, JASA)

product-limit (Kaplan-Meier) estimator for S(t) with
right-censored event times — nonparametric estimator

» Mantel (1966, Cancer Chem); Gehan (1965, Biometrika)

logrank test (extended Wilcoxon test) with right-censored
event times — nonparametric test

» Cox (1972, JRSSB; 1975, Biometrika)

Cox's proportional hazards model and partial likelihood
approach — semiparametric inference



3.1 Kaplan-Meier Estimator

Motivation

Ti,...,To~ F() iid

the empirical distribution £,(t) = 2377
MLE (Kiefer's version)

S|
3
=
AN

< t), the nonparametric

£)

S|
07
ﬂl:
|
IN

the empirical distribution I:',,(t) =
> VYVt e [0,00),
> E{F,(t)} = F(t)
> Var{F,(t)} = F(t)[1 - F(t)]/n
> /n{Fa(t) = F(£)} = N(O, F(t)[1 — F(t)]) in distn, as n — oo
> supsq |Fa(t) — F(t)| = 0 as,

> /n{F,(t) — F(t)} — Gaussian Process with mean zero and
variance function F(t)[1 — F(t)] in distribution (weak convergence)

What if {(U;,6,):i=1,...,n}?



Lifetabl

Life Tables, Canada, Provinces and Territories. 2000 to 2002

e

Table 1a Life table for the first year of life, Canada, 2000 to 2002: males

Age x [ dy Px A cv(ad) L Tx e cv(e)
0to 1 day 100000 252 0.99748 0.00252 4.8 273 7691798 76.92 0.04
1to 2 days 99748 23 0.99977 0.00023 16.0 273 7691525 77.11 0.04
2to 3 days 99725 20  0.99998 0.00020 17.1 273 7691252 77.12 0.04
3to 4 days 99705 14 0.99986 0.00014 20.9 273 7690979 77.14 0.04
4to 5 days 99691 11 0.99989 0.00011 23.1 273 7690706 77.15 0.04
5to 6 days 99680 8 0.99991 0.00009 26.1 273 7690433 77.15 0.04
6to 7 days 99672 7 0.99994 0.00006 30.6 273 7690160 77.15 0.04
0to 7 days 100000 335 0.99665 0.00335 4.2 1911 7691798 76.92 0.04
7 to 14 days 99665 40 0.99959 0.00041 12.1 1909 7689887 77.16 0.04
14 to 21 days 99625 23 0.99977 0.00023 16.1 1908 7687978 77.17 0.04
21 to 28 days 99602 13 0.99987 0.00013 21.2 1909 7686070 77.17 0.04
0 to 28 days 100000 411 0.99589  0.00411 3.8 7637 7691798 76.92 0.04
28 days to 2 months 99589 48 0.99952 0.00048 11.1 8963 7684161 77.16 0.04
2 to 3 months 99541 33 0.99967 0.00033 13.3 8294 7675198 77.11 0.04
3 to 4 months 99508 21 0.99979 0.00021 16.7 8291 7666904 77.05 0.04
4 to -5 months 99487 16 0.99984 0.00016 195 8290 7658613 76.98 0.04
5 to 6 months 99471 12 0.99988 0.00012 22.0 8289 7650323 76.91 0.04
6 to 7 months 99459 12 0.99987 0.00013 21.6 8288 7642034 76.84 0.04
7 to 8 months 99447 6 0.99994 0.00006 32.2 8287 7633746 76.76 0.04
8to 9 months 99441 5 099995 0.00005 34.0 8286 7625459 76.68 0.04
9 to 10 months 99436 7 0.99994 0.00006 30.6 8286 7617173 76.60 0.04
10 to 11 months 99429 5 0.99995 0.00005 34.0 8286 7608887 76.53 0.04
11 to 12 months 99424 4 0.99996 0.00004 37.8 8285 7600601 76.45 0.04

Note: Estimates with a coefficient of variation (cv) greater than 33.3% are to be used with caution
F too unreliable to be published (indicates a cv of at least 100.0%).



Recall “Actuarial Life Table”

time number number number
interval  of death  of withdrawal  at risk §; bj P;
L
l; b; W; N; notw, 174
Ik

pj=P(an individual survives beyond I;|beyond /;_1)
gj = 1 — pj=P(an individual dies in /;|beyond /;_1)
P;=P(an individual survives beyond ;)

Rationale?



3.1 Kaplan-Meier Estimator

In general, F € F = {all cdfs}
With the right-censored data, the likelihood function

L(F) =[] dF (u)* 1L — F(u)]**
i=1

Maximize L(F) as F(-) having only masses at the distinct observed
event times: 0=V < Vi <...<V; <V,
= the Kaplan-Meier estimator (left-continuous)

1 t< Vi

A n; : ~
So=TI (1-7) = a0 -h) Vi<t<Vin
J ? t> VJ+1



3.1 Kaplan-Meier Estimator: Exercise 4

####Ex4.A Generate n=1000 iid observations from Weibull (shapes:
#### from Unif (0,2). Then form a collection of right-censored
WBobs2<-rweibull (n=1000, shape=3, scale=1)

Censoring2<-runif (n=1000, min=0,max=2)
Observed2<-apply (cbind (WBobs2,Censoring2),1,min)
Delta2<-ifelse (WBobs2>Censoring2,0,1)

sum (Delta2);

[1] 527

###KM estm with censored data

### R package ‘survival ’:

library ("survival")

KMestm<-survfit (Surv(Observed2,Delta2)~1)
> objects (KMestm)

[1] "call" "conf.int" "conf.type" "lower"
[5] "n" "n.censor" "n.event" "n.risk"
[9] "std.err" "surv" "time" "type"

[13] "upper"



o |
— — True
— NE_iid
fffff NE_rc
----- KM Estm
«© _|
o
§ o |
‘3 o
c
=}
L
2
2 <
3 S
N
o
O_ Jd o =, -
o

0.0 0.5 1.0 15 2.0 25 3.0

T ~ Weibull(shape = 3, scale = 1); C ~ U(0,2); n= 1000, §; = 527



3.1 Kaplan-Meier Estimator: Remarks

» Recall the alternative pointwise Cl: for t > 0,
(§KM(t)e—1.96 \/Aar(gKM(t))’ §KM(t)el.96 \/sr(SKM(t)))

» For comparing two populations’ distn with censored data
e.g. Sup;so |§17KM(t) - §2,KM(t)|? an extension of the
Kolmogorov-Smirnov test statistic sup,~q |F1,n(t) — F2,m(t)]
no need to specify the population distributions into parametric
models

> for assessing parametric goodness-of-fit with censored data
> eg is T~ NE(N) (H(t) = At)?
= to check if log S(t) = —At?
> eg. is T ~ Weibull(\, p) (H(t) = AtP)?
= to check if log ( — log 5(t)) = log A + plog t?



3.2 Logrank Test

Introduction
Consider to compare two groups wrt the event time distns ... ...

For example,

» in the placebo group, iid To; ~ Fo(-): i=1,...,n

» in the treatment group, iid Tyj ~ Fi(-): j=1,...,m
= Ho: Fo(-) = F(")

... Many different ways to differ: any UMP?

» directional tests: designated/oriented to a specific type of
difference between the two population distns

e.g. Si(t) = So(t)

» omnibus tests: there is power to detect all or most types of
differences but not with great power for a specific difference



Early work with censored data ... ...

» Gehan (1965, Biometrika): modifying rank tests to allow
censoring
=—> Wilcoxon-Gehan testing procedure ...

» Mantel (1966, Cancer Chem): adapting data to use methods
for several 2 x 2 tables
— Logrank testing procedure ...

» Application of the Cox partial likelihood approach (Cox,
1975)*



3.2 Lo%rank Test

with observed distinct event times: 0 < Vi < ..., Vk

First, consider what happens at time t = V| ...

att =V,
Group failure not | at risk
placebo no/ - Noy
treatment nyy - Ny
total n; - N,

» the expected number of failures from treatment group
E,=E(0O) = n,Nﬁl’ under Hy

> V(0r) = BB Ny () (1 — ) under Ho

Now, pull together the information at all the observed failure times

S _Ta0-E) N(O. 1)
YL V(o)

approximately under Hy
—> the Mantel (logrank) testing procedure ...



3.2 Logrank Test
Example. Group 0: 3.1, 6.87, 9, 9, 11.3", 16.2
Group 1: 8.7, 9, 10.17, 12.1*, 18.7, 23.1*



3.2 Logrank Test: Variants of Logrank Test

» What if the subjects are stratified according to a factor, say, gender?
Stratified Logrank Test with the factor of K levels

7 Ziea(0W - EW)

approximately under Hp.

N(0,1)

» What if there is a need to weight the information at different times
differently?

Weighted Logrank Test

— Z/L:1 W/(O/ - E/) ~ N(O 1)
T (s W) |

approximately under Hj.

How to choose the weights in general?

> If w;, = N, the test is similar to Gehan test.



3.2 Logrank Test: Variants of Logrank Test

» What if to compare p treatment groups with the placebo group?

Ho . 50() = 51() =...= Sp()
Given all the distinct failure times are 0 < Vj < ... < V| < o0,
att =V,
Group failure not | at risk
placebo Noy Noy
treatment 1 ny Ny,
treatment p Npi Npi
total n, N,
niy Nl/ /
o= : |iE=EO0}= : |$= Vi=var{O}
: : ]
Np| Npl

0= ZIL:I 0, E= Z/L:1 E, V= Z/L:1 Vi
(6-&) ¥ (6-E) ~(p)
approximately under Hy, provided the sample size is large.

» The test is omnibus.
» |f 3 trend test is intended?



3.3 Cox Proportinal Hazards Model

» Recall the two-sample problem — testing on Hp : hi(-) = ho(+)

> 7 1 treatment
0 placebo '

to study event time T|Z = z7?
> with general covariates Z, to explore event time T|Z = z7
= regression modeling?

> Feigl and Zelen (1965)
T|Z =z~ NE(\,): h(t|z) = X\, = \oe’?
B =0 — no effect of Z

= Cox Proportional Hazards Model (Cox, JRSSB 1972)



Cox Proportional Hazards Model: (Cox, JRSSB 1972)
The hazard function of event time T|Z =z is

h(t|z) = ho(t)e’?, t>0

The conditional survivor function is

S(t|z) = exp(— /Ot ho(u)eP?du) = exp(—Ho(t)e’?), t >0

Remark:

> the hazard ratio h(t|Z = z1)/h(t|Z = z) = e?(21=2) for all
t>0 proportional!



3.3 Cox Proportional Hazards Model: Estimation of /5

Often is interested to estm (3 in the Cox PH model, for
comparison/evaluate/assess effect ... ...

With right-censored event times along with the covariates
{(U,-,(S,-,Z;) = 1,...,[7}
from n indpt subjects and indpt censoring

L(B, ho(-)|data) = H(ho( )e7)” exp(—Ho(ui)e)

i=1
L(B, ho(-)|data) = L1(B|data)L2(B, ho(-)|data)
— the Cox partial likelihood function (Cox, Biometrika 1975)



the Cox partial likelihood function (Cox, Biometrika 1975)

L1(B|data) = f[ ( e )6i

=1 ZIERJ eﬂz’
the risk set at time uj: Rj = {j : uj > u;}

— the MPLE (maximum partial likelihood estimator) of f3:

A

B = argmax,y BLl(B‘data)

With some conditions, as n — 0o

> 3 Bas.

> /n(B—B) — N(0,7?) in distn



1 treatment

0 placebo
(U,‘,(S,‘,Zi): (1671a1)7 (137070)3 (21,171)7 (117170)7 (127171)

Example. n =5 indpt subjects and Z =

e? 9eA(2¢% 4-1)

L1(8) . Dlog Ly(8)/08 =1~

(3ef +2)(3ef + 1) (3ef +2)(3ef + 1)

— 3 =1Llog2—log3



3.3 Cox Proportional Hazards Model: Testing on /3

Consider Hy : B=0vs H; : B #0
the partial score test

E/ER,’ Z e/BZI
N ZIER,‘ e,BZ/

Based on U(8)/v/n ~ AN(0,7?) as n — oo with some conditions,
= the partial score testing procedure ...

U(B) = dlog L1(B)/08 =Y _ iz
i—1

Remark.

> e.g. when Z = { 1 treatment

0 placebo
U(ﬂ)’5:0 = Z/L:;l (O/ — ”-’Il\\llil,l) = O — E, the numerator of
the logrank test statistic



3.3 Cox Proportional Hazards Model: Exercise 5

####Ex5.A Generate n=1000 observations from each

####NE (rate=1) and NE(rate=exp(0.5)); from each Unif (0,1),Unif
####for censoring times. Then form a collection of right-censc
sum(Delta3a); sum(Delta3b);

[1] 365

[1] 632

###Cox PH model fits with censored data
### R package ‘survival’:
library ("survival")
Coxphoverall <-coxph(Surv(c(Observed3a,0Observed3b),
c(Delta3a,Delta3b))~Zindicator)
> summary (Coxphoverall)

n= 2000, number of events= 997

coef exp(coef) se(coef) z Pr(>lzl)

Zindicator 0.47304 1.60486 0.06639 7.125 1.04e-12 *xx**

exp (coef) exp(-coef) lower .95 upper .95
Zindicator 1.605 0.6231 1.409 1.828

Concordance= 0.553 (se = 0.009 )

Rsquare= 0.026 (max possible= 0.999 )
Likelihood ratio test= 52.31 on 1 df, p=5e-13
Wald test = 50.76 on 1 df, p=le-12
Score (logrank) test = 51.7 on 1 df, p=6e-13



Part 4. Further Topics

» More unconventional data structures

> interval censoring
» current status data
» truncated data

» competing risks

>

» Beyond survival analysis

» what if the event is recurrent?
» what if there are multiple types of events?
» what if events take place spatio-temporally?



Thank-you for your participation in this course!

What have we studied?
» Part 1. Preliminaries

» Introduction
» Basic concepts

» Part 2. Parametric Interence in LIDA

» Commonly used parametric models
» Inference with right-censored data

» Part 3. Nonparametric/Semi-parametric Approaches

» Kaplan-Meier estimator
» Logrank test
» Cox proportional hazards model

» Part 4. Further Topics
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